New interactions of invadopodia scaffold protein TKS5 with proteins that take part in actin cytoskeleton reorganization, endo-/exocytosis and membrane remodeling
Abstract
Aim. TKS5 is a key scaffold protein of invadopodia. In its absence, the cells completely lose the ability to form invadopodia. This fact makes TKS5 a potential target for cancer cure and one of the central proteins in the
investigation of cancer cell invasion. Additionally, the question remains about the function of TKS5 in normal cells. Therefore, in order to extend knowledge about TKS5 role in healthy and invasive cells, we tested the TKS5 interaction with the proteins involved in signal transduction: PLCγ1, SRC, CRK, CSK; the proteins involved in plasma membrane remodeling: AMPH1, BIN1, CIN85, ITSN1, ITSN2; the protein involved in the actin cytoskeleton rearrangement: CTTN. Methods. We used the GST Pull-down assay to identify the protein-protein interaction. Results. We revealed that TKS5 SH3 domains interact with CIN85. There were identified interactions between the TKS5 isoform with exon 7 and without exon 9a and SH3 domains of CTTN, ITSN1, ITSN2, AMPH1 and BIN1. Conclusions. TKS5 interacts with CIN85, CTTN, ITSN1, ITSN2, AMPH1 and BIN1, which take part in membrane remodeling, endo-/exocytosis and actin cytoskeleton rearrangement.
Keywords: TKS5, scaffold proteins, actin cytoskeleton, plasma membrane.
References
Chen Y., Liu L., Li L., Xia H., Lin Z., Zhong T. AMPH-1 is critical for breast cancer progression. Journal of Cancer. 2018. Vol. 9(12). P. 2175–2182. doi: 10.7150/jca.25428
Courtneidge S. A. Cell migration and invasion in human disease: the Tks adaptor proteins. Biochemical Society Transactions. 2012. Vol. 40(1). P. 129–132. doi: 10.1042/BST20110685
Diaz B., Shani G., Pass I., Anderson D., Quintavalle M., Courtneidge S. A. Tks5-dependent, nox-mediated generation of reactive oxygen species is necessary for invadopodia formation. Science Signaling. 2011. Vol. 2(88):ra53. doi: 10.1126/scisignal.2000368
Flynn D. C. Adaptor proteins. Oncogene. 2001. Vol. 20(44). P. 6270–6272. doi: 10.1038/sj.onc.1204769
Havrylov S., Redowicz M. J., Buchman V. L. Emerging roles of Ruk/CIN85 in vesicle-mediated transport, adhesion, migration and malignancy. Traffic. 2010. Vol. 11(6). P. 721–731. doi: 10.1111/j.1600-0854.2010.01061.x
Kirkbride K., Sung B., Sinha S., Weaver A. M. Cortactin: a multifunctional regulator of cellular invasiveness. Cell Adhesion and Migration. 2011. Vol. 5(2). P. 187–198.
Kropyvko S. V. Interactome of invadopodia scaffold protein TKS5. Biopolymers and cell. 2015. Vol. 31(6). P. 417–421. doi: 10.7124/bc.0008FE
Linder S. Invadosomes at a glance. Journal of Cell Science. 2009. Vol. 122(17). P. 3009–3013. doi: 10.1242/jcs.032631
Murphy D. A., Courtneidge S. A. The “ins” and “outs” of podosomes and invadopodia: characteristics, formation and function. Nature Reviews. Molecular Cell Biology. 2011. Vol. 12(7). P. 413–426. doi: 10.1038/nrm3141
Murphy D. A., Diaz B., Bromann P. A., Tsai J. H., Kawakami Y., Maurer J., Stewart R. A., Izpisua-Belmonte J. C., Courtneidge S. A. A. Src-Tks5 pathway is required for neural crest cell migration during embryonic development. PLoS One. 2011. Vol. 6(7), e22499. doi: 10.1371/journal.pone.0022499
Oikawa T., Itoh T., Takenawa T. Sequential signals toward podosome formation in NIH-src cells. The Journal of Cell Biology. 2008. Vol. 182(1). P. 157–169. doi: 10.1083/jcb.200801042
Orient A., Terhorst C., Kisto K. The homolog of the five SH3-domain protein (HOFI/SH3PXD2B) regulates lamellipodia formation and cell spreading. PLos One. 2011. Vol. 6(8): e23653. doi: 10.1371/journal.pone.0023653
Prokic I., Cowling B. S., Laporte J. Amphiphysin 2 (BIN1) in physiology and diseases. Journal of Molecular Medicine (Berl). 2014. Vol. 92(5). P. 453-463. doi: 10.1007/s00109-014-1138-1
Pucharcos C., Estivill X., de la Luna S. Intersectin 2, a new multimodular protein involved in clathrin-mediated endocytosis. FEBS Lett. 2000. Vol. 478(1-2). P. 43–51.
Quiñones G. A., Oro A. E. BAR domain competition during directional cellular migration. Cell Cycle. 2010. Vol. 9(13). P. 2522–2528. doi: 10.4161/cc.9.13.12123
Russo A., O'Bryan J. P. Intersectin 1 is required for neuroblastoma tumorigenesis. Oncogene. 2012. Vol. 31(46). P. 4828–4834. doi: 10.1038/onc.2011.643
Sharma V. P., Eddy R., Entenberg D., Kai M., Gertler F. B., Condeelis J. Tks5 and SHIP2 regulate invadopodium maturation, but not initiation, in breast carcinoma cells. Current Biology. 2013. Vol. 23(21). P. 2079–2089. doi: 10.1016/j.cub.2013.08.044
Stylli S. S., Stacey T. T. I., Verhagen A. M., Xu S. S., Pass I., Courtneidge S. A., Lock P. Nck adaptor proteins link Tks5 to invadopodia actin regulation and ECM degradation. Journal of Cell Science. 2009. Vol. 122(15). P. 2727–2740. doi: 10.1242/jcs.046680
Tsyba L., Skrypkina I., Rynditch A., Nikolaienko O., Ferenets G., Fortna A., Gardiner K. Alternative splicing of mammalian Intersectin 1: domain associations and tissue specificities. Genomics. 2004. Vol. 84(1). P. 106–113. doi: 10.1016/j.ygeno.2004.02.005
Tsyba L., Gryaznova T., Dergai O., Dergai M., Skrypkina I., Kropyvko S., Boldyryev O., Nikolaienko O., Novokhatska O., Rynditch A. Alternative splicing affecting the SH3A domain controls the binding properties of intersectin 1 in neurons. Biochemical and Biophysical Research Communications. 2008. Vol. 372(4). P. 929–934. doi: 10.1016/j.bbrc.2008.05.156
Tsyba L., Nikolaienko O., Dergai O., Dergai M., Novokhatska O., Skrypkina I., Rynditch A. Intersectin multidomain adaptor proteins: regulation of functional diversity. Gene. 2011. Vol. 473(2). P. 67–75. doi: 10.1016/j.gene.2010.11.016
Weaver A. M. Regulation of cancer invasion by reactive oxygen species and Tks family scaffold proteins. Science Signaling. 2011. Vol. 2(88):pe56. doi: 10.1126/scisignal.288pe56
Wu Y., Matsui H., Tomizawa K. Amphiphysin I and regulation of synaptic vesicle endocytosis. Acta Medica Okayama. 2009. Vol. 63(6). P. 305-323. doi: 10.18926/AMO/31822