Antioxidant activity in Brassica napus L. plants expressing lox-dependent BAR gene

  • L. O. Sakhno SI “Institute of Food Biotechnology and Genomics» NAS of Ukraine, Ukraine, 04123, Kyiv, Osipovskogo str., 2A
  • K. V. Lystvan Institute of Cell Biology and Genetic Engineering NAS of Ukraine, Ukraine, DSP-22, 03680, Kyiv, Zabolotnogo str., 148


Aim. The study of possible unintended biochemical peculiarities of newly obtained herbicide-resistant canola (Brassica napus L.) plants expressing the lox-dependent BAR gene was the aim. Methods. Total soluble protein content, total free radical scavenging activity, and superoxide dismutase activity have been investigated using Bradford’s, DPPH, and nitroblue tetrazolium assays, respectively. Fresh weight of plants grown on media with or without phosphinothricin was also measured. Results. The antioxidant activity of leaf extracts of untransformed plants under in vitro growth condi-tions had no significant differences in comparison with ones of phospinothricin-resistant plants in the third generation. No significant changes in parameters investigated were observed in transgenic plants cultivated on media with herbicide addition compared to ones grown on media without it. Fresh weight and total soluble protein content were similar in transgenic and untransformed canola plants under growth without phosphinothricin. Conclusions. Lox-dependent BAR gene introduction and expression resulted in no significant differences in leaf antioxidant activity in transgenic canola plants comparing to untransformed controls.
Keywords: Brassica napus, antioxidant activity, DPPH, glufosinate, superoxide dismutase.


Hasanuzzaman M., Hossain A.M., Teixeira da Silva J.A., Fujita M. Plant response and tolerance to abiotic oxidative stress: antioxidant defense is a key factor. In: B. Venkateswarlu et al. (eds.). Crop stress and its management: perspectives and strategies. 2012. Springer Netherlands. P. 261–315.

Gusta L.V., Benning N.T., Wu G., Luo X., Liu X., Gusta M.L., McHughen A. Superoxide dismutase: an all-purpose gene for agri-biotechnology. Mol. Breed. 2009. V. 24(2). P. 103–115. doi: 10.1007/s11032-009-9274-y.

Rai A.C., Singh M., Shah K. Effect of water withdrawal on formation of free radical, proline accumulation and activities of antioxidant enzymes in ZAT12-transformed transgenic tomato plants. Plant Physiol. Biochem. 2012. V. 61. P. 108–114. doi: 10.1016/j.plaphy.2012.09.010.

Boo H.-O., Heo B.-G., Gorinstein S., Chon S.-U. Positive effects of temperature and growth conditions on enzymatic and antioxidant status in lettuce plants. Plant Sci. 2011. V. 181(4). P. 479–484. doi: 10.1016/j.plantsci.2011.07.013.

Mohamed A.A., Castagna A., Ranieri A., di Toppi L.S. Cadmium tolerance in Brassica juncea roots and shoots is affected by antioxidant status and phytochelatin biosynthesis. Plant Physiol. Biochem. 2012. V. 57(1). P. 15–22. doi: 10.1016/j.plaphy.2012.05.002.

Sharma P., Bhatt D., Zaidi M.G.H., Saradhi P.P., Khanna P.K., Arora S. Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea. Appl. Biochem. Biotech. 2012. V. 167(8). P. 2225–2233. doi: 10.1007/s12010-012-9759-8.

Aquil F., Ahmad I., Mehmood Z. Antioxidant and free radical scavenging properties of twelve traditionally used Indian medicinal plants. Turk. J. Biol. 2006. V. 30(3). P. 177–183.

Krishnaiah D., Sarbatly R., Nithyanandam R. A review of the antioxidant potential of medicinal plant species. Food bioprod. process. 2011. V. 89(3). P. 217–233. doi: 10.1016/j.fbp.2010.04.008.

Sakhno L.A., Gocheva E.A., Komarnitskii I.K., Kuchuk N.V. Stable expression of the promoterless bar gene in transformed rapeseed plants. Cytol Genet. 2008. –V. 42(1). P. 21–28. doi: 10.1007/s11956-008-1003-7.

Lea P.J., Joy K.W., Ramos J.L., Guerrero M.G. The action of 2-amino-4-(methylphosphiny)-butanoic acid (phosphinothricin) and its 2-oxoderivative on the metabolism of cyanobacteria and higher plants. Phytochem. 1984. V. 23(1). P. 1–6. doi: 10.1016/0031-9422(84)83066-6.

Xu W., Guo F., Zhou X., Shang Y., Yuan Y., Zhang F., Huang K. Unintended effects were investigated in antioxidant activity between genetically modified organisms and their nontransgenic control. Afr. J. Biotechnol. 2011. V. 10(46). P. 9272–9279.

Sakhno L.O., Slyvets M.S. Superoxide dismutase activity in transgenic canola. Cytol Genet. 2014. V. 48(3). P. 145–149. doi: 10.3103/S0095452714030104.

Murashige T., Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant. 1962. V. 15(3). P. 473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x.

Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976. V. 72(2). P. 248–254. doi: 10.1016/0003-2697(76)90527-3.

Beyer W.F., Fridovich I. Assaying for superoxide dismutase activity some large consequences of minor changes in conditions. Anal. Biochem. 1987. V. 161 (2). P. 559–566. doi: 10.1016/0003-2697(87)90489-1.

Blois M.S. Antioxidant determinations by the use of a stable free radical. Nature. 1958. V. 181 (4617). P. 1199–1200. doi: 10.1038/1811199a0.

Sakhno L.O., Lystvan K.V., Kuchuk M.V. Antyoksydantna aktyvnist' lystkiv biotekhnolohichnoho ripaku (Vrassica napus L.) zi stiykistiu do herbitsydiv na osnovi hlifosatu i hliufozinatu. Visn. Khark. nats. ahrar. un-tu. 2015. V. 3(36). P. 62–70. [in Ukrainian]

Shcherbak N., Kishchenko O., Sakhno L., Komarnytsky I., Kuchuk M. Lox-dependent gene expression in transgenic plants obtained via Agrobacterium-mediated transformation. Cytol. Genet. 2013. V. 47 (3). P. 145–155. doi: 10.3103/S0095452713030079.

De Block M., Botterman J., Vandewiele M., Dockx J., Thoen C., Gossele V., Movva N.R., Thompson C., Montagu M.V., Leemans J. Engineering herbicide resistance in plants by expression of a detoxifying enzyme. EMBO J. 1987. V. 6 (9). P. 2513–2518.

Spivak S.G., Berdichevets I.N., Yarmolinsky D.G., Maneshina T.V., Shpakovski G.V., Kartel N.A. Construction and characteristics of transgenic tobacco Nicotiana tabacum L. plants expressing CYP11A1 cDNA encoding cytochrome P450SCC. Rus J Genet. 2009. V. 45 (9). P. 1067–1073. doi: 10.1134/S1022795409090075.

Savić J., Platiša J., Dragićević M., Nikolić R., Mitić N., Cingel A., Vinterhalter B. The activity of peroxidases and superoxide dismutases in transgenic phosphinothricin-resistant Lotus corniculatus shoots. Arch. Biol. Sci. 2010. V. 62 (4). P. 1063–1070. doi: 10.2298/ABS1004063S.

Kingston A.H., Foyer C.H. Overexpression of Mn-superoxide dismutase in maize leaves leads to increased monodehydroascorbate reductase, dehydroascorbate reductase and glutathione reductase activities. J. Exp. Bot. 2000. V. 51 (352). P. 1867–1877. doi: 10.1093/jexbot/51.352.1867.

Van Camp W., Capiau K., van Montagu M., Inze D., Slooten L. Enhancement of oxidative stress tolerance in transgenic tobacco plants overproducing Fe-superoxide dismutase in chloroplasts. Plant Physiol. 1996. V. 112 (4). P. 1703–1714. doi: 10.1104/pp.112.4.1703.

Basu U., Good A.G., Taylor G.J. Transgenic Brassica napus plants overexpressing aluminium-induced mitochondrial manganese superoxide dismutase cDNA are resistant to aluminium. Plant Cell Environ. 2001. V. 24 (12). P. 1269–1278. doi: 10.1046/j.0016-8025.2001.00783.x.

Slyvets M., Sakhno L. Human interferon alpha 2b positively affects сanola growth in both aseptic non-stressed and water deficit conditions. IJBSANS. 2014. V. 1 (5). P. 104–118.

Sakhno L.O., Slyvets M.S., Kuchuk M.V. Cyp11A1 canola plants under heat stress conditions. Cytol Genet. 2014. V. 48 (5). P. 279–284. doi: 10.3103/S0095452714050090.

Chen I.-C., Chang H.-C., Yang H.-W., Chen G.-L. Evaluation of total antioxidant activity of several popular vegetables and chinense herbs: a fast approach with ABTS/H2O2/HRP system in microplates. J Food Grug Analysis. 2004. V. 12 (1). P. 29–33.

Li X., Gao M.-J., Pan H.-Yu, Cui De-J., Gruber M.Y. Purple canola: Arabidopsis PAP1 increases antioxidants and phenolics in Brassica napus leaves. J. Agric. Food Chem. 2010. V. 58 (3). P. 1639–1645. doi: 10.1021/jf903527y.