Cellulolytic and xylanolytic enzyme complex of Penicillium funiculosum Thom

  • O. M. Yurieva D.K. Zabolotny Institute of Microbiology and Virology of NAS of Ukraine, Ukraine, 03143, Kyiv, Zabolotny str., 154
  • A. P. Hryhanskyi L.F. Lambert Spawn Co., USA, Coatesville, Pennsylvania
  • S. O. Syrchin D.K. Zabolotny Institute of Microbiology and Virology of NAS of Ukraine, Ukraine, 03143, Kyiv, Zabolotny str., 154
  • L. T. Nakonechna D.K. Zabolotny Institute of Microbiology and Virology of NAS of Ukraine, Ukraine, 03143, Kyiv, Zabolotny str., 154
  • A. K. Pavlychenko D.K. Zabolotny Institute of Microbiology and Virology of NAS of Ukraine, Ukraine, 03143, Kyiv, Zabolotny str., 154
  • I. M. Kurchenko D.K. Zabolotny Institute of Microbiology and Virology of NAS of Ukraine, Ukraine, 03143, Kyiv, Zabolotny str., 154


Aim. The aim of this research was a comparative study of β-glucosidase activity of endophytic and soil Penicillium funiculosum strains. Methods. β-Gucosidase activity was determined by hydrolysis of pNPG on 4th and 6th days of cultivation. Barcoding of P. funiculosum 16795 DNA was carried out with ITS1 and ITS4 primers. Results. Obtained data demonstrate the ability of endophytic and soil P. funiculosum strains to synthesize β-glucosidase activity and hydrolyze Na-CMC and wheat straw. Studied activities enhanced with increasing cultivation time of micromycetes. Endophytic isolates of P. funiculosum had higher β-glucosidase activities than soil ones. Conclusions. P. funiculosum strains, especially 16795, are promising for further research of β-glucosidase preparations as additional component to the T. reesei enzymes, as well as to create recombinant constructs for obtaining a balanced composition of cellulolytic enzyme complexes.
Keywords: Penicillium funiculosum, β-glucosidase activity, endophytes, soil strains.


Adav S.S., Chao L.T., Sze S.K. Quantitative secretomic analysis of Trichoderma reesei strains reveals enzymatic composition for lignocellulosic biomass degradation. Mol. Cell. Proteomics. 2012. V. 11(7). doi: 10.1074/mcp.M111.012419.

Ma L., Zhang J., Zou G., Wang C., Zhou Z. Improvement of cellulase activity in Trichoderma reesei by heterologous expression of a beta-glucosidase gene from Penicillium decumbens. Enzyme Microbial. Technol. 2011. V. 49(4). P. 366–371. doi: 10.1016/j.enzmictec.2011.06.013.

Treebupachatsakul T., Shioya K., Nakazawa H., Kawaguchi T., Morikawa Y., Shida Y., Ogasawara W., Okada H. Utilization of recombinant Trichoderma reesei expressing Aspergillus aculeatus beta-glucosidase I (JN11) for a more economical production of ethanol from lignocellulosic biomass. J. Biosci. Bioeng. 2015. V. 120(6). P. 657–665. doi: 10.1016/j.jbiosc.2015.04.015.

Harnpicharnchai P., Champreda V., Sornlake W., Eurwilaichitr L. A thermotolerant beta-glucosidase isolated from an endophytic fungi, Periconia sp., with a possible use for biomass conversion to sugars. Protein Expr. Purif. 2009. V. 67(2). P. 61–69. doi: 10.1016/j.pep.2008.05.022.

Gusakov A.V. Alternatives to Trichoderma reesei in biofuel production. Trends Biotechnol. 2011. V. 29(9). P. 419–425. doi: 10.1016/j.tibtech.2011.04.004.

Marjamaa K., Toth K., Bromann P.A., Szakacs G., Kruus K. Novel Penicillium cellulases for total hydrolysis of lignocellulosics. Enzyme Microb. Technol. 2013. V. 52(6–7). P. 358–369. doi: 10.1016/j.enzmictec.2013.03.003.

Ramani G., Meera B., Vanitha C., Rao M., Gunasekaran P.. Production, purification, and characterization of a β-glucosidase of Penicillium funiculosum NCL1. Appl. Biochem. Biotechnol. 2012. V. 167(5). P. 959–972. doi: 10.1007/s12010-012-9645-4.

de Castro A.M., Leite S.G. Ferreira, Pereira N. Cellulases from Penicillium funiculosum: production, properties and application to cellulose hydrolysis. J. Industrial Microbiol. Biotechnol. 2010. V. 37(2). P. 151–158. doi: 10.1007/s10295-009-0656-2.

Okunev O.N., Sinitsyn A.P., Chernoglazov V.M., Solov'eva I.V. Shtamm mitsilial'nogo griba Penicillium funiculosum – produtsent kompleksa karbogidraz, soderzhashchego tselliulazy, beta-gliukanazy, ksilanazy, pektinazy i mannazy. Patent Rossiyskoy federatsii No 2287570 20.11.2006. Biul. No 32. [in Russian]

Metody eksperimental'noy mikologii: Spravochnik / pod red. V.I. Bilay. K.: Nauk. dumka, 1982. 550 p. [in Russian]

Parry N.J., Beever D.E., Owen E. et al. Biochemical characterization and mechanism of action of a thermostable beta-glucosidase purified from Thermoascus aurantiacus. Biochemical Journal. 2001. V. 353(1). P. 117 – 127.

Dörnte B., Kües U. Fast microwave-based DNA extraction from vegetative mycelium and fruiting body tissues of Agaricomycetes for PCR amplification. Curr. Trends Biotechnol. Pharm. 2013. V. 7. P. 825–836.

Izumitsu K., Hatoh K., Sumita T., Kitade Y., Morita A., Gafur A., Ohta A., Kawai M., Yamanaka T., Neda H., Ota Y., Tanaka Ch. Rapid and simple preparation of mushroom DNA directly from colonies and fruiting bodies for PCR. Mycoscience. 2012. V. 5(53). P. 396–401. doi: 10.1007/s10267-012-0182-3.

Toju H., Tanabe A.S., Yamamoto S., Sato H. High-Coverage ITS Primers for the DNA-Based Identification of Ascomycetes and Basidiomycetes in Environmental Samples. PLoS ONE. 2012. V. 7(7). e40863. doi: 10.1371/journal.pone.0040863.

Xhang X-Z., Zhang Y-H.P. Cellulases: characteristics, sources, production, and application. In: Bioprocessing Technologies in Biorefenery for Sustainable Production of fuels, Chemicals, and Polymers / Shang-Tian Yang (ed.). Wiley-AICHE, 2013. Chapter 8. P. 131–146.

Kaur J., Chadha B.S., Kumar D.A., Kaur G.S., Saini H.S. Purification and characterization of β-glucosidase from Melanocarpus sp. MTCC 3922. Electronic Journal of Biotechnology. 2007. V. 2(10). doi: 10.2225/vol10-issue2-fulltext-4.

Sørensen A., Lübeck M., Peter S. Lübeck P.S., Ahring B.K. Fungal Beta-Glucosidases: A Bottleneck in Industrial Use of Lignocellulosic Materials. Biomolecules. 2013. No. 3. P. 612–631. doi: 10.3390/biom3030612.

Maeda R.N., Serpa V.I., Rocha V.A.L., Mesquita R.A.A., Santa Anna L.M.M., de Castro A.M., Driemeierd C.E., Pereira Jr.N., Polikarpov I. Enzymatic hydrolysis of pretreated sugar cane bagasse using Penicillium funiculosum and Trichoderma harzianum cellulases. Process Biochemistry. 2011. V. 5(46). P. 1196–1201. doi: 10.1016/j.procbio.2011.01.022.

Yur’ieva O.M., Kurchenko I.M., Syrchin S.O., Kharkevych O.S., Pavlychenko A.K., Nakonechna L.T. Kompleks tseliulozolitychnykh i ksylanolitychnykh fermentiv Penicillium funiculosum Thom. Faktory eksperymental'noi evoliutsii orhanizmiv. 2016. V. 19. P. 188–191. [in Ukrainian]

Yur’ieva O.M., Kurchenko I.M., Syrchin S.O., Kharkevych O.S., Pavlychenko A.K., Nakonechna L.T. Tseliulazna ta ksylanazna aktyvnist' endofitnykh i hruntovykh shtamiv Penicillium funiculosum Thom. Mikrobiolohichnyy zhurnal. 2016. V. 78(5). P. 75–82. [in Ukrainian]

Jorgensen H., Olsson L. Production of cellulases by Penicillium brasilianum IBT20888 – effect of substrate on hydrolytic performance. Enzyme and Microbial Technology. 2006. V. 38(3–4). P. 381–390. doi: 10.1016/j.enzmictec.2005.06.018.

Maeda R.N., Barcelos C.A., Santa Anna L.M., Pereira N.Jr. Cellulase production by Penicillium funiculosum and its application in the hydrolysis of sugar cane bagasse for second generation ethanol production by fed batch operation. J Biotechnol – 2013. V. 163(1). P. 38–44. doi: 10.1016/j.jbiotec.2012.10.014.

Ramani G., Meera B., Vanitha C., Rajendhran J., Gunasekaran P. Molecular cloning and expression of thermostable glucose-tolerant β-glucosidase of Penicillium funiculosum NCL1 in Pichia pastoris and its characterization. J. Ind. Microbiol. Biotechnol. 2015. V. 42(4). P. 553–565. doi: 10.1007/s10295-014-1549-6.