Білки-партнери PH домену протеїна BCR-ABL: створення генетичних конструкцій для виявлення молекулярних особливостей розвитку ХМЛ

  • С. В. Антоненко Інститут молекулярної біології і генетики НАН України, Україна, 03680, м. Київ, вул. Акад. Заболотного, 150
  • І. В. Кравчук Інститут молекулярної біології і генетики НАН України, Україна, 03680, м. Київ, вул. Акад. Заболотного, 150
  • Д. С. Гур'янов Інститут молекулярної біології і генетики НАН України, Україна, 03680, м. Київ, вул. Акад. Заболотного, 150
  • Г. Д. Телегєєв Інститут молекулярної біології і генетики НАН України, Україна, 03680, м. Київ, вул. Акад. Заболотного, 150


Aim. Impact of domains of Bcr in oncogenic effect associated with Bcr-Abl remains unclear. Investigation of protein-protein interactions can be one of the effective ways to reveal those molecular events that alter normal cellular processes and cause malignant transformation. Previous research showed that USP1, Cortactin and Hsp27 may interact with PH domain. To confirm interactions and to study their biological consequences, genetic constructs for expression and microscopy should be created. Methods. Various standard molecular cloning techniques and expression in E. coli strain Rosetta. Results. Several DNA constructs have been created (pBluescriptSKII(+)+USP1, pFastFT-N1-CTTN, pMediumFT-N1-CTTN, pSlowFT-N1- CTTN and pЕТ42а-hsp27). Effective bacterial expression of Hsp27 has been performed. Conclusions. All DNA constructs can be effective instruments to study biological role of interactions between PH domain of Bcr and USP1, Cortactin, Hsp27.
Keywords: PH domain, Bcr-Abl, USP1, Cortactin, Hsp27.


Miroshnychenko D., Dubrovska A., Maliuta S., Telegeev G., Aspenström P. Novel role of pleckstrin homology domain of the Bcr-Abl protein: Analysis of protein-protein and protein-lipid interactions. Exp Cell Res. 2010. V. 316(4). P. 530-542. doi: 10.1016/j.yexcr.2009.11.014

García-Santisteban I., Peters G.J., Giovannetti E., Rodríguez J.A. USP1 deubiquitinase: cellular functions, regulatory mechanisms and emerging potential as target in cancer therapy. Mol Cancer . 2013. V. 12. P. 91. doi: 10.1186/1476-4598-12-91

Fraile J.M., Quesada V., Rodriguez D., Freije J.M., Lopez-Otin C. Deubiquitinases in cancer: new functions and therapeutic options. Oncogene. 2012. 31. р. 2373-2388. doi: 10.1038/onc.2011.443

Cotto-Rios X.M., Jones M.J.K., Huang T.T. Insights into phosphorylation-dependent mechanisms regulating USP1 protein stability during the cell cycle. Cell Cycle. 2011. V. 10. No. 23. P. 4009-4016. doi: 10.4161/cc.10.23.18501

Antonenko S.V., Gurianov D.S., Тelegeev G.D. Colocalization of USP1 and РН domain of Bcr-Abl oncoprotein in terms of chronic myeloid leukemia cell rearrangements. Cytology and genetics. 2016. V. 50(4). P. 11-15. doi: 10.3103/S0095452716050029

Gatesman A.A., Weed S.A. Cortactin Branches Out: Roles in Regulating Protrusive Actin Dynamics. Cell Motil Cytoskeleton. 2008. V. 65(9). P. 687-707. doi: 10.1002/cm.20296

Weed S.A., Parsons J.T. Cortactin: coupling membrane dynamics to cortical actin assembly. Oncogene. 2001. V. 20. P.6418-6434. doi: 10.1038/sj.onc.1204783

Gurianov D.S., Antonenko S.V., Kravchuk I.V., Telegeev G.D. Cellular localization of -tubulin, cortactin and PH domain of BCR, and their potential role in signalling pathways and clathrin-mediated endocytosis. 12th International Congress of Cell Biology. Abstract Book. 2016. P. 154.

Betzig E., Patterson G.H., Sougrat R., Lindwasser O.W., Olenych S., Bonifacino J.S., Davidson M.W., Lippincott-Schwartz J., Hess H.F. Imaging Intracellular Fluorescent Proteins at Nanometer Resolution. Science. 2006. V. 313, I. 5793. P.1642-1645. doi: 10.1126/science.1127344

Seigneuric R., Mjahed H., Gobbo J., Joly A.L., Berthenet K., Shirley S., Garrido C. Heat shock proteins as danger signals for cancer detection. Frontiers in oncology. 2011. V. 1. P. 37. doi: 10.3389/fonc.2011.00037

Jalkanen S., Lahesmaa-Korpinen A., Heckman C. Phosphoprotein profiling predicts response to tyrosine kinase inhibitor therapy in chronic myeloid leukemia patients. Exp. hematology. 2012. V. 40. P.705-714. doi: 10.1016/j.exphem.2012.05.010

Deininger M.W., Goldman J.M., Melo J.V. The molecular biology of chronic myeloid leukemia. Blood. 2000. V. 96. P. 3343-3356. doi: 10.1182/blood.V96.10.3343.h8003343_3343_3356

Park K., Gaynor R., Kwak Y. Heat shock protein 27 association with the I kappa B kinase complex regulates tumor necrosis factor alpha-induced NF-kappa B activation. J. Biol. Chem. 2003. V. 278. P. 35272-35278. doi: 10.1074/jbc.M305095200

Bhattacharyya S., Dudeja P., Tobacman J. ROS, Hsp27, and IKKbeta mediate dextran sodium sulfate (DSS) activation of IkappaBa, NFkappaB, and IL-8. Inflammatory bowel diseases. 2009. V. 15. P. 673-683. doi: 10.1002/ibd.20821