Formation of arbuscular mycorrhizal symbiosis and its effect on the possibility of infection by parasitic plants

Keywords: arbuscular mycorrhiza, strigolactones, parasitic plants


Aim. The purpose of the work is to analyze the data available in the literature on the mechanisms of formation of mycorrhizal symbiosis, in particular, the participation of strigolactones in this process and the influence of mycorrhizal symbiosis on the possibility of plant infection by parasitic plants. Results. The article provides a brief overview of the formation of arbuscular mycorrhizal symbiosis and the role of strigolactones in this process. Evidence is provided that strigolactones secreted by roots into the rhizosphere are signal molecules for AM fungi, as they stimulate their metabolism and induce spore germination, growth and branching of hyphae of AM fungi. In turn, AM fungi release signaling molecules that initiate processes related to the formation of symbiosis in plants. Conclusions. Data available in the literature indicate that strigolactones play an important role in the formation of mycorrhizal symbiosis. Mycorrhizal plants are often less susceptible to infection by parasitic plants, which may depend on the species of both the host plant and the AM fungus. The formation of mycorrhizal symbiosis can be a factor that weakens the infection by parasitic plants, the study of this issue can be important for increasing the effectiveness of the fight against parasitic plants.


Garcia-Garrido J. M., Lendzemo V., Castellanos-Morales V., Steinkellner S., Vierheilig H. Strigolactones, signals for parasitic plants and arbuscular mycorrhizal fungi. Mycorrhiza. 2009. Vol. 19. P. 449–459. doi: 10.1007/s00572-009-0265-y.

Gobbato E. Recent developments in arbuscular mycorrhizal signaling. Curr Opin Plant Biol. 2015. Vol. 26. P. 1–7. doi: 10.1016/j.pbi.2015.05.006.

Akiyama K. Chemical identification and functional analysis of apocarotenoids involved in the development of arbuscular mycorrhizal symbiosis. Biosci. Biotechnol. Biochem. 2007. Vol. 71. P. 1405–1414. doi: 10.1271/bbb.70023.

Lopez-Raez J. A., Pozo M. J., Garcia-Garrido J. M. Strigolactones. A cry for help in the rhizosphere. Botany. 2011. Vol. 89. P. 513–522. doi: 10.1139/b11-046.

Cook C. E., Whichard L. P., Turner B., Wall M. E., Egley G. H. Germination of witchweed (Striga lutea Lour.): isolation and properties of a potent stimulant. Science. 1966. Vol. 154. P. 1189–1190.

Parniske M. Cue for the branching connection. Nature. 2005. Vol. 435. P. 750–751. doi: 10.1038/435750a.

Parniske M. Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat. Rev. Microbiol. 2008. Vol. 6 (10). P. 763–75. doi: 10.1038/nrmicro1987.

Waters M. T., Gutjahr C., Bennett T., Nelson D. C. Strigolactone Signaling and Evolution. Annu. Rev. Plant Biol. 2017. Vol. 68. P. 291–322. doi: 10.1146/annurev-arplant-042916-040925.

Besserer A., Puech-Pages V., Kiefer P., Gomez-Roldan V., Jauneau A., et al. Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria. PLOS Biol. 2006. 4:e226. doi: 10.1371/journal.pbio.0040226.

Genre A., Chabaud M., Balzergue C., Puech-Pages V., Novero M., et al. Short-chain chitin oligomers from arbuscular mycorrhizal fungi trigger nuclear Ca2+ spiking in Medicago truncatula roots and their production is enhanced by strigolactone. New Phytol. 2013. Vol. 198. P. 190–202. doi: 10.1111/nph.12146.

Feng F., Sun J., Radhakrishnan G.V., Lee T., Bozsóki Z., Fort S., Gavrin A., Gysel K., Thygesen M. B., Andersen K. R., Radutoiu S., Stougaard J., Oldroyd G. E. D. A combination of chitooligosaccharide and lipochitooligosaccharide recognition promotes arbuscular mycorrhizal associations in Medicago truncatula. Nat. Commun. 2019. Vol. 10 (1): 5047. doi: 10.1038/s41467-019-12999-5.

Сhiu C. H., Paszkowski U. Receptor-Like Kinases Sustain Symbiotic Scrutiny. Plant Physiol. 2020. Vol. 182. P. 1597–1612. doi: 10.1104/pp.19.01341.

Pons S., Fournier S., Chervin C., Bécard G., Rochange S., Frei Dit Frey N., Puech Pagès V. Phytohormone production by the arbuscular mycorrhizal fungus Rhizophagus irregularis. PLoS One. 2020. Vol. 15 (10). e0240886. doi: 10.1371/journal.pone.0240886.

MacLean A. M., Bravo A., Harrison M. J. Plant Signaling and Metabolic Pathways Enabling Arbuscular Mycorrhizal Symbiosis. Plant Cell Advance Publication. 2017. Vol. 29 (10). P. 2319–2335. doi: 10.1105/tpc.17.00555.

Pimprikar P., Gutjahr C. Transcriptional Regulation of Arbuscular Mycorrhiza Development. Plant and Cell Physiology. 2018. Vol. 59 (4). P. 678–695. doi: 10.1093/pcp/pcy024.

Guillotin B., Etemadi M., Audran C., Bouzayen M., Bécard G., Combier J. P. Sl-IAA27 regulates strigolactone biosynthesis and mycorrhization in tomato (var. MicroTom). New Phytol. 2017. Vol. 213 (3). P. 1124–1132. doi: 10.1111/nph.14246.

Besserer A., Becard G., Jauneau A., Roux C., Sejalon-Delmas N. GR24, a synthetic analog of strigolactones, stimulates the mitosis and growth of the arbuscular mycorrhizal fungus Gigaspora rosea by boosting its energy metabolism. Plant Physiol. 2008. Vol. 148. P. 402–413. doi: 10.1104/pp.108.121400.

Yoneyama K., Xie X., Sekimoto H., Takeuchi Y., Ogasawara S., Akiyama K., Hayashi H., Yoneyama K. Strigolactones, host recognition signals for root parasitic plants and arbuscular mycorrhizal fungi, from Fabaceae plants. New Phytol. 2008. Vol. 179. P. 484–494. doi: 10.1111/j.1469-8137.2008.02462.x.

Gomez-Roldan V., Fermas S., Brewer P. B., Puech-Pages V., Dun E. A., Pillot J.-P., Letisse F., Matusova R., Danoun S., Por-tais J.-C., Bouwmeester H., Becard G., Beveridge C. A., Rameau C., Rochange S. F. Strigolactone inhibition of shoot branching. Nature. 2008. Vol. 455. P. 189–194. doi: 10.1038/nature07271.

Tsai A. Y., Oota M., Sawa S. Chemotactic host-finding strategies of plant endoparasites and endophytes. Front. Plant Sci. 2020. Vol. 11. Article 1167. P. 1–12. doi: 10.3389/fpls.2020.01167.

Lendzemo V. W., Kuyper T. W., Kropff M. J., van Ast A. Field inoculation with arbuscular mycorrhizal fungi reduces Striga hermonthica performance on cereal crops and has the potential to contribute to integrated Striga management. Field Crops Res. 2005. Vol. 91. P. 51–61.

Gworgwor N. A., Weber H. C. Arbuscular mycorrhizal fungi parasite-host interaction for the control of Striga hermonthica (Del.) Benth. in sorghum [Sorghum bicolor (L.) Moench]. Mycorrhiza. 2003. Vol. 13. P. 277–281.

Othira J. O., Omolo J. O., Wachira F. N., Onek L. A. Effectiveness of arbuscular mycorrhizal fungi in protection of maize (Zea mays L.) against witch weed (Striga hermonthica Del Benth) infestation. J. Agric. Biotech. Sustainable Dev. 2012. Vol. 4 (3). P. 37–44. doi: 10.5897/JABSD12.007.

Lendzemo L., Kuyper T. W., Vierheilig H. Striga seed germination activity of root exudates and compounds present in stems of Striga host and nonhost (trap crop) plants is reduced due to root colonization by arbuscular mycorrhizal fungi. Mycorrhiza. 2009. Vol. 19. P. 287–294. doi: 10.1007/s00572-009-0235-4.

Bouwmeester H. J., Roux C., Lopez-Raez J. A., Becard G. Rhizosphere communication of plants, parasitic plants and AM fungi. Trends Plant Sci. 2007. Vol. 12. P. 224–230. doi: 10.1016/j.tplants.2007.03.009.

López-Ráez J. A., Charnikhova T., Fernández I., Bouwmeester H., Pozo M. J. Arbuscular mycorrhizal symbiosis decreases strigolactone production in tomato. Journal of Plant Physiology. 2011. Vol. 168 (3). P. 294–297. doi: 10.1016/j.jplph.2010.08.011.

Fernandez-Aparicio M., Garcia-Garrido J. M., Ocampo J. A., Rubiales D. Colonisation of field pea roots by arbuscular mycorrhizal fungi reduces Orobanche and Phelipanche species seed germination. Weed Research. 2010. Vol. 50 (3). P. 262–268. doi: 10.1111/j.1365-3180.2010.00771.x.

Mishev K., Dobrev P. I., Lacek J., Filepová R., Yuperlieva-Mateeva B., Kostadinova A., Hristeva T. Hormonomic changes driving the negative impact of broomrape on plant host interactions with arbuscular mycorrhizal fungi. Int. J. Mol. Sci. 2021. Vol. 22 (24). P. 13677. doi: 10.3390/ijms222413677.