Physiological, biochemical and economic characteristics of transgenic winter wheat plants with gene ornitin-Δ-aminotransferases

Keywords: Triticum aestivum, Agrobacterium-mediated transformation, ornithine-δ-aminotransferase gene, physiological, biochemical and economic characteristics


Aim. To analyze the physiological, biochemical and economic characteristics of genetically modified plants of new promising genotypes of winter bread wheat of seed generation T2 with the heterologous gene of ornithine-δ-aminotransferase of alfalfa. Methods. Agrobacterium-mediated transformation in vitro; biochemical determination of the activity of the enzyme ornithine-δ-aminotransferase (OAT) and the content of free L-proline; morphometric indicators and elements of crop structure; mathematical statistics. Results. It was found that the presence of additional copies of the oat gene in transgenic plants leads to increased activity of the enzyme ornithine-δ-aminotransferase (on average 1.5 times compared to the original plants), but they do not differ significantly from plants of the original genotypes in free L-Proline is neither normal nor under conditions of soil drought. It has been shown that the introduction into the genome of wheat plants of a genetic construct that enhances the expression of the oat gene stimulates root growth both under normal and stressful conditions. Under conditions of insufficient moisture supply, plants of transgenic lines also exceeded untransformed plants in the number and weight of grains from the whole plant. Conclusions. Analysis of physiological and biochemical characteristics and economic characteristics of transgenic soft wheat plants containing the heterologous gene of ornithine-δ-aminotransferase of alfalfa showed their increased tolerance to soil drought compared to non-transgenic genotypes. Biotechnological plants are characterized by a more developed root system, which increased the ability of plants to grow in conditions of water scarcity.


Hiei Y., Ishida Y., Komari T. Progress of cereal transformation technology mediated by Agrobacterium tumefaciens. Frontiers in Plant Sci. 2014. Vol. 5. P. 1–11. doi: 10.3389/fpls.2014.00628.

Hussain J., Manan S., Ahmad S., Ahmed T., Shah M. Biotechnоlogies used in genetic transformation of Triticum aestivum: A mini overview. Fuuast J. Biol. 2013. Vol. 3. P. 105–109.

Borisjuk N., Kishchenko O., Eliby S., Schramm C., Anderson P., Jatayev S., Kurishbayev A., Shavrukov Y. Genetic modification for wheat improvement: from transgenesis to genome editing. BioMed Research International. 2019. 18 p. doi: 10.1155/2019/6216304.

Dubrovna O.V., Morgun B.V. Current status of research on Agrobacterium-mediated wheat transformation. Fiziol. rast. genet. 2018. Vol. 50 (3). P. 187–217. doi: 10.15407/ frg2018.03.187. [in Ukrainian]

Binka A., Orczyk W., Nadolska-Orczyk A. The Agrobacterium-mediated transformation of common wheat (Triticum aestivum L.) and triticale (w Triticosecale Wittmack): role of the binary vector system and selection Cassettes. J. of Appl. Gen. 2012. Vol. 53. P. 1–8. doi: 10.1007/s13353-011-0064-y.

Mamrutha H., Rakesh K., Karnam V. et al. Genetic transformation of wheat – рresent status and future potential. J. of Wheat Research. 2014. Vol. 6 (2). Р. 107–119.

Stránská J., Tylichová M., Kopecný D., Snégaroff J., Sebela, M. Biochemical characterization of pea ornithine-δ-aminotransferase: substrate specificity and inhibition by di- and polyamines. Biochimie. 2010. Vol. 92. Р. 940–948. doi: 10.1016/j.biochi.2010.03.026.

Anwar A., She M., Wang K., Riaz B., Ye X. Biological Roles of Ornithine Aminotransferase (OAT) in Plant Stress Tolerance: Present Progress and Future Perspectives. International Journal of Molecular Sciences. 2018. Vol. 19. P. 3681. doi: 10.3390/ijms19113681.

Anwar A., She M., Wang K., Ye X. Cloning and molecular characterization of Triticum aestivum ornithine amino transferase (TaOAT) encoding genes. BMC Plant Biol. 2020. Vol. 20. P. 187. doi: 10.1186/s12870-020-02396-2.

Roosens N. H., Bitar F. A., Loenders K. Overexpression of ornithine-aminotransferase increases proline biosynthesis and confers osmotolerance in transgenic plants. Mol Breed. 2002. Vol. 9 (2). P. 73–80. doi: 10.1023/A%3A1026791932238.

Vendruscolo E. C., Schuster I., Pileggi M., Scapim C. A., Molinari H. B., Marur C. J., Vieira L. G. Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat. Plant Physiol. 2007. Vol 164 (10). P. 1367–1376. doi: 10.1016/j.jplph.2007.05.001.

Funck D., Stadelhofer B., Koch W. Ornithine-delta-aminotransferase is essential for arginine catabolism but not for proline biosynthesis. BMC Plant Biol. 2008. Vol. 8. P. 40. doi: 10.1186/1471-2229-8-40.

Slivka L.V., Dubrovna O.V. Genetic transformation of new perspective winter wheat genotypes in vitro. Factors of experimental evolution of organisms. 2020. Vol. 26. P. 270–275. doi: 10.7124/FEEO.v26.1278. [in Ukrainian]

Andriushchenko V.K., Saianova V.V., Zhuchenko A.A., D'iachenko N.I., Chilikina L.A., Drozdov V.V., Korochkina S.K., Cherep G.I., Medvedev V.V., Niutin Iu.I. Modification of the method for determining proline to identify drought-resistant forms of the genus Lycopersicon Tourn. Izvestiia Akademii Nauk Moldavskoi SSR. 1981. Vol. 4. P. 55–60. [in Russian]

Madan S., Nainawatee H.S., Jain R.K. Proline and proline metabolizing enzymes in-vitro selected NaCl-tolerant. Ann Bot. 1995. Vol. 76 (1). P. 51–57.