Genetic determination of drought resistance in common wheat (Triticum aestivum L.)

  • M. V. Sidorenko Odesa I. I. Mechnikov National University Ukraine, 65082, Odesa, str. Dvoryanska, 2
  • S. V. Chebotar Plant Breeding and Genetics Institute — National Center of Seed and Cultivar Investigations Ukraine, 65036, Odesa, Ovidiopolska dor., 3
Keywords: common wheat, molecular mechanisms of adaptation, drought resistance, gene expression, transcription factors


The aim of the work is to analyze the literature data on genetic determinants and molecular mechanisms involved in the regulation of adaptation and resistance to drought in common wheat. Results. Regulation of the response to osmotic stress in common wheat is carried out through several abscisic acid-dependent or independent pathways. ABA inhibits the growth processes of aerial parts of the plant by inhibiting the action of auxins and cytokinins, increases the hydraulic conductivity of roots by modulating the activity of aquaporins - membrane water channels, changes the flow of ions in the closing cells of the stomata, which leads to their closure and a decrease in water consumption for transpiration. ABA activates a number of TFs that regulate the expression of genes, the products of which are necessary to eliminate the negative consequences of water deficit. ABA-dependent is activation of the genes of antioxidant defense enzymes - superoxide dismutase, peroxidase, catalase and enzymes of the ascorbate-glutathione cycle. Activators of their transcription are NAC, MYB, WRKY, NF-Y, ZFHD and TaERF3 TFs. Expression of LEA genes and dehydrins, which prevent protein aggregation due to dehydration, is ensured by both ABA-dependent and -independent signal transduction pathways, with the help of AREB/ABF, NAC, MYB, WRKY, AP2/EREBP and ZFHD TFs. ABA also activates the biosynthesis of proline - one of the main low-molecular osmoprotectants that accumulate in the cell and ensure the stability of its water regime. Osmolyte accumulation is regulated by MYB, WRKY, NF-Y and TaERF3 TFs. Conclusions. Thus, in the article is considered the regulatory role of ABA in the formation of drought resistance through molecular interactions involving aquaporins, dehydrins, SNRK2 protein kinases, LEA proteins and their genes, as well as genes of transcription factors NAC, MYB, WRKY, NF-Y, AP/ EREBP, ZFHD, DREB. However, due to the complexity of the wheat genome and the polygenicity of the drought resistance trait, there is currently no line of molecular genetic markers for certain alleles of drought resistance genes that would allow predicting the drought resistance of Ukrainian breeding varieties. The molecular genetic mechanisms underlying drought resistance and the identification of genes with the greatest phenotypic effect, as well as the modeling of the work of these genes at different stages of ontogenesis and the involvement of drought resistance alleles in breeding programs, currently require further research.


Abhinandan K., Skori L., Stanic M., Hickerson N. M. N., Jamshed M., Samuel M. A. Abiotic stress signaling in wheat – an inclusive overview of hormonal interactions during abiotic stress responses in wheat. Frontiers in Plant Science. 2018. Vol. 9. P. 1–25. doi: 10.3389/fpls.2018.00734.

Abid M., Ali S., Qi L. K., Zahoor R., Tian Z., Jiang D., Snider J. L., Dai T. Physiological and biochemical changes during drought and recovery periods at tillering and jointing stages in wheat (Triticum aestivum L.). Scientific Reports. 2018. Vol. 8(1). P. 1–15. doi: 10.1038/s41598-018-21441-7.

Abu-Romman S. Molecular cloning and expression analysis of zinc finger-homeodomain transcription factor TaZFHD1 in wheat. South African Journal of Botany. 2014. Vol. 91. P. 32–36. doi: 10.1016/j.sajb.2013.11.014.

Akpinar B. A., Avsar B., Lucas S. J., Budak H. Plant abiotic stress. Plant Signaling аnd Behavior. 2012. Vol. 7(11). P. 1450–1455. doi: 10.4161/psb.21894.

Barnabás B., Jäger K., Fehér A. The effect of drought and heat stress on reproductive processes in cereals. Plant, cell and environment. 2008. Vol. 31, №. 1. P. 11–38. doi: 10.1111/j.1365-3040.2007.01727.x.

Blum A. Osmotic adjustment is a prime drought stress adaptive engine in support of plant production. Plant, Cell and Environment. 2017. Vol. 40(1). P. 4–10. doi: 10.1111/pce.12800.

Borill P., Harrington S. A., Uauy C. Genome-wide sequence and expression analysis of the NAC transcription factor family in polyploidy. Genes, Genomes, Genetics. 2017. Vol. 7. P. 3019–3029. doi: 10.1534/g3.117.043679.

Csiszár J., Gallé Á., Horváth E., Dancsó P., Gombos M., Váry Z., Erdei L., Györgyey J., Tari I. Different peroxidase activities and expression of abiotic stress-related peroxidases in apical root segments of wheat genotypes with different drought stress tolerance under osmotic stress. Plant Physiology and Biochemistry. 2012. Vol. 52. P. 119–129. doi: 10.1016/j.plaphy.2011.12.006.

Demirevska K., Simonova-Stoilova L., Vassileva V., Vaseva I., Grigorova B., Feller U. Drought-induced leaf protein alterations in sensitive and tolerant wheat varieties. General and Applied Plant Physiology. 2008. Vol. 34(1-2). P. 79–102. doi: 10.7892/boris.110728.

Ding W., Fang W., Shi S., Zhao Y., Li X., Xiao K. Wheat WRKY type transcription factor gene TaWRKY1 is essential in mediating drought tolerance associated with an ABA-dependent pathway. Plant Molecular Biology Reporter. 2016. V. 34. P. 1111–1126. doi: 10.1007/s11105-016-0991-1.

Dunn J., Hunt L., Afsharinafar M., Al Meselmani M., Mitchell A., Howells R., Wallington E., Fleming A.J., Gray J.E. Reduced stomatal density in bread wheat leads to increased water-use efficiency. Journal of Experimental Botany. 2019. Vol. 70(18). P. 4737–4747. doi: 10.1093/jxb/erz248.

Egawa C., Kobayashi F., Ishibashi M., Nakamura T., Nakamura C., Takumi S. Differential regulation of transcript accumulation and alternative splicing of a DREB2 homolog under abiotic stress conditions in common wheat. Genes & Genetic Systems. 2006. Vol. 81. P. 77–91. doi: 10.1266/ggs.81.77.

Feng J., Wang L., Wu Y., Luo Q., Zhang Y., Qiu D., Han J., Su P., Xiong Z., Chang J., Yang G., He G. TaSnRK2.9, a sucrose non-fermenting 1-related protein kinase gene, positively regulates plant response to drought and salt stress in transgenic tobacco. Frontiers in Plant Science. 2019. Vol. 9. doi: 10.3389/fpls.2018.02003.

Fujita Y., Fujita M., Shinozaki K., Yamaguchi-Shinozaki K. ABA-mediated transcriptional regulation in response to osmotic stress in plants. Journal of Plant Research. 2011. Vol. 124(4). P. 509–525. doi: 10.1007/s10265-011-0412-3

Goyal K., Walton L.J., Tunnacliffe A. LEA proteins prevent protein aggregation due to water stress. Biochemical Journal. 2005. Vol. 388. P. 151–157. doi: 10.1042/BJ20041931.

Guo R., Shi L. X., Jiao Y., Li M. X., Zhong X. L., Gu F. X., Liu Q., Xia X., Li H. R. Metabolic responses to drought stress in the tissues of drought-tolerant and drought-sensitive wheat genotype seedlings. AoB Plants. 2018. Vol. 10(2). doi: 10.1093/aobpla/ply016.

Hayat S., Hayat Q., Alyemeni N. M., Wani A. S., Pitchel J., Ahmad A. Role of proline under changing environments: a review. Plant Signaling and Behavior. 2012. Vol. 7(11). P. 1456–1466. doi: 10.4161/psb.21949.

Huang Q., Wang Y., Li B., Chang J., Chen M., Li K., G. Yang, G. He TaNAC29, a NAC transcription factor from wheat, enhances salt and drought tolerance in transgenic Arabidopsis. BMC Plant Biology. 2015. Vol. 15. doi: 10.1186/s12870-015-0644-9

Ji X., Dong B., Shiran B., Talbot M. J., Edlington J. E., Hughes T., White R. G., Gubler F., Dolferus R. Control of abscisic acid catabolism and abscisic acid homeostasis is important for reproductive stage stress tolerance in cereals. Plant Physiology. 2011. Vol. 156. P. 647–662. doi: 10.1104/pp.111.176164.

Keskin B. C., Sarikaya A. T., Yüksel B., Memon A.R. Abscisic acid regulated gene expression in bread wheat (Triticum aestivum L.). Australian Journal of Crop Science. 2010. Vol. 4(8). P. 617–625.

Kizis D., Lumbreras V., Pagès M. Role of AP2/EREBP transcription factors in gene regulation during abiotic stress. FEBS Letters. 2001. Vol. 498(2-3). P. 187–189. doi: 10.1016/S0014-5793(01)02460-7.

Kobayashi F., Maeta E., Terashima A., Kawaura K., Ogihara Y., Takumi S. Development of abiotic stress tolerance via bZIP-type transcription factor LIP19 in common wheat. Journal of Experimental Botany. 2008. Vol. 59. P. 891–905. doi: 10.1093/jxb/ern014.

Kolupaev Yu.E., Vayner A.A., Yastreb T.O. Proline: physiological functions and regulation of its content in plans under stress Bulletin of Kharkiv National Agrarian University. Biology. 2014. Vol. 2 (32). Р. 6–22.

Kulik A., Wawer I., Krzywińska E., Bucholc M., Dobrowolska G. SnRK2 protein kinases — key regulators of plant response to abiotic stresses. OMICS: A Journal of Integrative Biology. 2011. Vol. 15(12). P. 859–872. doi: 10.1089/omi.2011.0091.

Li C., Lv J., Zhao X., Ai X., Zhu X., Wang M., Zhao S., Xia G. TaCHP: A wheat zinc finger protein gene down-regulated by abscisic acid and salinity stress plays a positive role in stress tolerance. Plant Physiology. 2010. Vol. 154. P. 211–221. doi: 10.1104/pp.110.161182.

Li C., Zhang W., Yuan M., Jiang L., Sun B., Zhang D., Shao Y., Liu A., Liu X., Ma J. Transcriptome analysis of osmotic-responsive genes in ABA-dependent and –independent pathways in wheat (Triticum aestivum L.) roots. PeerJ. 2019. Vol. 7. doi: 10.7717/peerj.6519

Li J., Wang X.-Q., Watson M. B., Assmann S. M. Regulation of abscisic acid–induced stomatal closure and anion channels by guard cell AAPK kinase. Science. 2000. Vol. 287(5451). P. 300–303. doi: 10.1126/science.287.5451.300.

Liu D., Sun J., Zhu D., Lyu G., Zhang C., Liu J., Wang H., Zhang X., Gao D. Genome-wide identification and expression profiles of late embryogenesis-abundant (LEA) genes during grain maturation in wheat (Triticum aestivum L.). Genes. 2019. Vol. 10. doi: 10.3390/genes10090696.

Ma L., Zhou E., Gao L., Mao X., Zhou R., Jia J. Isolation, expression analysis and chromosomal location of P5CR gene in common wheat (Triticum aestivum L.). South African Journal of Botany. 2008. Vol. 74. P. 705–712. doi: 10.1016/j.sajb.2008.05.003.

Ma X., Li C., Wang M. Wheat NF-YA10 functions independently in salinity and drought stress. Bioengineered. 2015. Vol. 6(4). P. 245–247. doi: 10.1080/21655979.2015.1054085.

Mahajan S., Tuteja N. Cold, salinity and drought stress: an overview. Archives of Biochemistry and Biophysics. 2005. 444. P. 139–158. doi: 10.1016/

Mao X., Chen S., Li A., Zhai C., Jing R. Novel NAC transcription factor TaNAC67 confers enhanced multi-abiotic stress tolerances in Arabidopsis. PLoS One. 2014. Vol. 9(1). doi: 10.1371/journal.pone.0084359.

Mao X., Zhang H., Qian X., Li A., Zhao G., Jing R. TaNAC2, a NAC-type wheat transcription factor conferring enhanced multiple abiotic stress tolerances in Arabidopsis. Journal of Experimental Botany. 2012. Vol. 63(8). P. 2933–2946. doi: 10.1093/jxb/err462.

Mao X., Zhang H., Tian S., Chang X., Jing R. TaSnRK2.4, an SNF1-type serine/threonine protein kinase of wheat (Triticum aestivum L.), confers enhanced multistress tolerance in Arabidopsis. Journal of Experimental Botany. 2009. Vol. 61(3). P. 683–696. doi: 10.1093/jxb/erp331.

Mao X., Jia D., Li A., Zhang H., Tian S., Zhang X., Jia J., Jing R. Transgenic expression of TaMYB2A confers enhanced tolerance to multiple abiotic stresses in Arabidopsis. Functional and Integrative Genomics. 2011. Vol. 11. P. 445–465. doi: 10.1007/s10142-011-0218-3.

McCubbin W. D., Kay C. M., Lane B. G. Hydrodynamic and optical properties of the wheat germ Em protein. Canadian Journal of Biochemistry and Cell Biology. 1985. Vol. 63. P. 803–811. doi: 10.1139/o85-102.

Miao L., Mao X., Wang J., Liu Z., Zhang B., Li W., Chang X., Reynolds M., Wang Z., Jing R. Elite haplotypes of a protein kinase gene TaSnRK2.3 associated with important agronomic traits in common wheat. Frontiers in Plant Science. 2017. Vol. 8. doi: 10.3389/fpls.2017.00368.

Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science. 2002. Vol. 7(9). P. 405–410. doi: 10.1016/s1360-1385(02)02312-9.

Monshausen G.B., Haswell E.S. A force of nature: molecular mechanisms of mechanoperception in plants. Journal of Experimental Botany. 2013. Vol. 64(15). P. 4663–4680. doi: 10.1093/jxb/ert204.

Morillon R., Chrispeels M.J. The role of ABA and the transpiration stream in the regulation of the osmotic water permeability of leaf cells. Proceedings of the National Academy of Sciences. 2001. Vol. 98(24). P. 14138–14143. doi: 10.1073/pnas.231471998.

Nambara E., Marion-Poll A. Abscisic acid biosynthesis and catabolism. Annual Review of Plant Biology. 2005. Vol. 56. P. 165–185. doi: 10.1146/annurev.arplant.56.032604.144046.

Niu C.-F., Wei W., Zhou Q.-Y., Tian A.-G., Hao Y.-J., Zhang W.-K., Ma B., Lin Q., Zhang Z.-B., Zhang J.-S., Chen S.-Y. Wheat WRKY genes TaWRKY2 and TaWRKY19 regulate abiotic stress tolerance in transgenic Arabidopsis plants. Plant, Cell and Environment. 2012. Vol. 35(6). P. 1156–1170. doi: 10.1111/j.1365-3040.2012.02480.x.

Okay S., Derelli E., Unver T. Transcriptome wide identification of bread wheat WRKY transcription factors in response to drought stress. Molecular Genetics and Genomics. 2014. Vol. 5(289). P. 765–781. doi: 10.1007/s00438-014-0849-x.

Osipova S.V., Permyakov A.V., Permyakova M.D., Pshenichnikova T.A., Bӧrner A. Leaf dehydroascorbate reductase and catalase activity is associated with soil drought tolerance in bread wheat. Acta Physiologiae Plantarum. 2011. Vol. 3. P. 2169–2177.

Qin Y., Wang M., Tian Y., He W., Han L., Xia G. Over-expression of TaMYB33 encoding a novel wheat MYB transcription factor increases salt and drought tolerance in Arabidopsis. Molecular Biology Reports. 2012. Vol. 39. P. 7183–7192. doi: 10.1007/s11033-012-1550-y.

Rehman S. U., Wang J., Chang X., Zhang X., Mao X., Jing R. A wheat protein kinase gene TaSnRK2.9-5A associated with yield contributing traits. Theoretical and Applied Genetics. 2019. V. 132. P. 907–919. doi: 10.1007/s00122-018-3247-7.

Rong W., Qi L., Wang A., Ye X., Du L., Liang H., Xin Z., Zhang Z. The ERF transcription factor TaERF3 promotes tolerance to salt and drought stresses in wheat. Plant Biotechnology Journal. 2014. Vol. 12. P. 468–479. doi: 10.1111/pbi.12153.

Saito S., Hirai N., Matsumoto C., Ohigashi H., Ohta D., Sakata K., Mizutani M. Arabidopsis CYP707As encode (+)-abscisic acid 8’-hydroxylase, a key enzyme in the oxidative catabolism of abscisic acid. Plant Physiology. 2004. Vol. 134. P. 1439–1449. doi: 10.1104/pp.103.037614.

Saradadevi R., Palta J. A., Siddique K. H. M. ABA-mediated stomatal response in regulating water use during the development of terminal drought in wheat. Frontiers in Plant Science. 2017. Vol. 8. doi: 10.3389/fpls.2017.01251.

Scandalios J. G. Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defences. Brazilian Journal of Medical and Biological Research. 2005. Vol. 38. P. 995–1014. doi: 10.1590/s0100-879x2005000700003.

Selote D.S., Khanna-Chopra R. Drought acclimation confers oxidative stress tolerance by inducing co-ordinated antioxidant defense at cellular and subcellular level in leaves of wheat seedlings. Physiologia Plantarum. 2006. 127. P. 494–506. doi: 10.1111/j.1399-3054.2006.00678.x.

Seo P.J., Lee S.B., Suh M.C., Park M.-J., Go Y.S., Park C.-M. The MYB96 transcription factor regulates cuticular wax biosynthesis under drought conditions in Arabidopsis. The Plant Cell. 2011. Vol. 23. P. 1138–1152. doi: 10.1105/tpc.111.083485.

Shan C., Zhang S., Ou X. The roles of H2S and H2O2 in regulating AsA-GSH cycle in the leaves of wheat seedlings under drought stress. Protoplasma. 2018. Vol. 255(4). P. 1257–1262. doi: 10.1007/s00709-018-1213-5.

Singh D., Laxmi A. Transcriptional regulation of drought response: a tortuous network of transcriptional factors. Frontiers in Plant Science. 2015. Vol. 6. doi: 10.3389/fpls.2015.00895

Son S. H., Chitnis V. R., Liu A., Gao F., Nguyen T.-N., Ayele B. T. Abscisic acid metabolic genes of wheat (Triticum aestivum L.): identification and insights into their functionality in seed dormancy and dehydration tolerance. Planta. 2016. V. 244. P. 429–447. doi: 10.1007/s00425-016-2518-2.

Stephenson T., McIntyre L., Collet C., Xue G.-P. Genome-wide identification and expression analysis of the NF-Y family of transcription factors in Triticum aestivum. Plant Molecular Biology. 2007. Vol. 65(1-2). P. 77–92. doi: 10.1007/s11103-007-9200-9.

Tang Y.M., Liu M.Y., Gao S.Q., Zhang Z., Zhao X., Zhao C.P., Zhang F.T., Chen X.P. Molecular characterization of novel TaNAC genes in wheat and overexpression of TaNAC2a confers drought tolerance in tobacco. Physiologia Plantarum. 2012. Vol. 144. P. 210–224. doi: 10.1111/j.1399-3054.2011.01539.x.

Tong S.-M., Xi H.-X., Al K.-J., Hou H.-S. Overexpression of wheat TaNCED gene in Arabidopsis enhances tolerance to drought stress and delays seed germination. Biologia Plantarum. 2017. Vol. 61(1). P. 64–72. doi: 10.1007/s10535-016-0692-5.

Tran L.-S.P., Nakashima K., Sakuma Y., Osakabe Y., Qin F., Simpson S.D., Maruyama K., Fujita Y., Shinozaki K., Yamaguchi-Shinozaki K. Co-expression of the stress-inducible zinc finger homeodomain ZFHD1 and NAC transcription factors enhances expression of the ERD1 gene in Arabidopsis. The Plant Journal. 2007. Vol. 49. P. 46–63. doi: 10.1111/j.1365-313X.2006.02932.x.

Tunnacliffe A., Wise M.J. The continuing conundrum of LEA proteins. Naturwissenschaften. 2007. V. 94. P. 791–812. doi: 10.1007/s00114-007-0254-y.

Tuteja N. Abscisic acid and abiotic stress signalling. Plant Signaling and Behavior. 2007. Vol. 2(3). P. 135–138. doi: 10.4161/psb.2.3.4156.

Voytenko L.V., Kosakivska I.V. Polifunctional phytohormone abscisic acid. The Bulletin of Kharkiv National Agrarian University. Biology. 2016. Vol. 1 (37). Р. 27-41.

Wang H., Zhu Y., Yuan P., Song S., Dong T., Chen P., Duan Z., Jiang L., Lu L., Duan H. Response of Wheat DREB Transcription Factor to Osmotic Stress Based on DNA Methylation. Int. J. Mol. Sci. 2021. 22. 7670. doi: 10.3390/ijms22147670

Wang P., Xue L., Batelli G., Lee S., Hou Y.-J., Van Oosten M. J., Zhang H., Tao W. A., Zhu J.-K. Quantitative phosphoproteomics identifies SnRK2 protein kinase substrates and reveals the effectors of abscisic acid action. Proceedings of the National Academy of Sciences. 2013. V. 110(27). Р. 11205–11210. doi: 10.1073/pnas.1308974110.

Wang X., Zeng J., Li Y., Rong X., Sun J., Sun T., Li M., Wang L., Feng Y., Chai R., Chen M., Chang J., Li K., Yang G., He G. Expression of TaWRKY44, a wheat WRKY gene, in transgenic tobacco confers multiple abiotic stress tolerances. Frontiers of Plant Science. 2015. V. 6. Р. 1-14. doi: 10.3389/fpls.2015.00615.

Wang Y., H. Xu, H. Zhu, Y. Tao, G. Zhang, L. Zhang, C. Zhang, Z. Zhang, Z. Ma Classification and expression diversification of wheat dehydrin genes. Plant Science. 2014. V. 214. P. 113-120. doi: 10.1016/j.plantsci.2013.10.005.

Wei Q., Luo Q., Wang R., Zhang F., He Y., Zhang Y., Qiu D., Li K., Chang J., Yang G., He G. A wheat R2R3-type MYB transcription factor TaODORANT1 positively regulates drought and salt stress responses in transgenic tobacco plants. Frontiers in Plant Science. 2017. Vol. 8. doi: 10.3389/fpls.2017.01374.

Wu G., Wilen R.W., Robertson A.J., Gusta L.V. Isolation, chromosomal localization, and differential expression of mitochondrial manganese superoxide dismutase and chloroplastic copper/zinc superoxide dismutase genes in wheat. Plant Physiology. 1999. Vol. 120. P. 513–520. doi: 10.1104/pp.120.2.513.

Wu H., Ni Z., Yao Y., Guo G., Sun Q. Cloning and expression profiles of 15 genes encoding WRKY transcription factor in wheat (Triticum aestivum L.). Progress in Natural Science. 2008. Vol. 18(6). P. 697–705. doi: 10.1016/j.pnsc.2007.12.006.

Xiong L., Zhu J. K. Regulation of abscisic acid biosynthesis. Plant Physiology. 2003. Vol. 133. P. 29–36. doi: 10.1104/pp.103.025395.

Xu Z.-S., Ni Z.-Y., Liu L., Nie L.-N., Li L.-C., Chen M., Ma Y.-Z. Characterization of the TaAIDFa gene encoding a CRT/DRE-binding factor responsive to drought, high-salt, and cold stress in wheat. Molecular Genetics and Genomics. 2008. Vol. 280. P. 497–508. doi: 10.1007/s00438-008-0382-x.

Xue G.-P., Way H.M., Richardson T., Drenth J., Joyce P.A., McIntyre C.L. Overexpression of TaNAC69 leads to enhanced transcript levels of stress up-regulated genes and dehydration tolerance in bread wheat. Molecular Plant. 2011. Vol. 4(4). P. 697–712. doi: 10.1093/mp/ssr013.

Yamaguchi-Shinozaki K., Shinozaki K. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annual Review of Plant Biology. 2006. Vol. 57. P. 781–803. doi: 10.1146/annurev.arplant.57.032905.105444.

Yang M., Zhao Y., Shi S., Du X., Gu J., Xiao K. Wheat nuclear factor Y (NF-Y) B subfamily gene TaNF-YB3;l confers critical drought tolerance through modulation of the ABA-associated signalling pathway. Plant Cell, Organ and Tissue Culture. 2017. Vol. 128. P. 97–111. doi: 10.1007/s11240-016-1088-0.

Yoshida T., Fujita Y., Sayama H., Kidokoro S., Maruyama K., Mizoi J., Shinozaki K., Yamaguchi-Shinozaki K. AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signalling involved in drought stress tolerance and require ABA for full activation. The Plant Journal. 2010. Vol. 61. P. 672–685. doi: 10.1111/j.1365-313X.2009.04092.x.

Zhang H., Mao X., Wu X., Wang C., Jing R. An abiotic stress response gene TaSnRK2.7-B in wheat accessions: genetic diversity analysis and gene mapping based on SNPs. Gene. 2011. Vol. 478(1-2). P. 28–34. doi: 10.1016/j.gene.2011.01.011.

Zhang H., Guo C., Li C., Xiao K. Cloning, characterization and expression analysis of two superoxide dismutase (SOD) genes in wheat (Triticum aestivum L.). Frontiers of Agriculture in China. 2008. Vol. 2(2). P. 141–149. doi: 10.1007/s11703-008-0023-5.

Zhang H., Li W., Mao X., Jing R., Jia H. Differential activation of the wheat SnRK2 family by abiotic stresses. Frontiers in Plant Science. 2016. Vol. 7. doi: 10.3389/fpls.2016.00420.

Zhang H., Mao X., Wang C., Jing R. Overexpression of a common wheat gene TaSnRK2.8 enhances tolerance to drought, salt and low temperature in Arabidopsis. PLoS ONE. 2010. V. 5(12). doi: 10.1371/journal.pone.0016041.

Zhang H., Mao X., Zhang J., Chang X., Jing R. Single-nucleotide polymorphisms and association analysis of drought-resistance gene TaSnRK2.8 in common wheat. Plant Physiology and Biochemistry. 2013. Vol. 70. P. 174–181. doi: 10.1016/j.plaphy.2013.04.010.

Zhang L., Zhao G., Jia J., Liu X., Kong X. Molecular characterization of 60 isolated wheat MYB genes and analysis of their expression during abiotic stress. Journal of Experimental Botany. 2011. Vol. 63(1). P. 203–214. doi: 10.1093/jxb/err264.

Zhang S. J., Song G. Q., Li Y.L., Gao J., Liu J.J., Fan Q.Q., Huang C.Y., Sui X. X., Chu X.S., Guo D., Li G.Y. Cloning of 9-cisepoxycarotenoid dioxygenase gene (TaNCED1) from wheat and its heterologous expression in tobacco. Biologia Plantarum. 2014. Vol. 58. P. 88–98. doi: 10.1007/s10535-013-0373-6.

Zhang Z.-G., Lv G.-de, Li B., Wang J.-J., Zhao Y., Kong F.-M., Guo Y., Li S.-S. Isolation and characterization of the TaSnRK2.10 gene and its association with agronomic traits in wheat (Triticum aestivum L.). PLoS ONE. 2017. V. 12(3). doi: 10.1371/journal.pone.0174425.

Zhao Y., Cheng X., Liu X., Wu H., Bi H., Xu H. The wheat MYB transcription factor TaMYB31 is involved in drought stress responses in Arabidopsis. Frontiers in Plant Science. 2018. V. 9. Р. 1-12. doi: 10.3389/fpls.2018.01426.