Introduction to in vitro culture and callus initiation in Salvia hispanica L. (chia)

  • A. Z. Revutskaya ESC "Institute of Biology and Medicine", Kyiv National Taras Shevchenko University, Ukraine, 01601, Kyiv, Glushkov avenue, 2
  • A. V. Holubenko ESC "Institute of Biology and Medicine", Kyiv National Taras Shevchenko University, Ukraine, 01601, Kyiv, Glushkov avenue, 2
  • N. V. Nuzhyna ESC "Institute of Biology and Medicine", Kyiv National Taras Shevchenko University, Ukraine, 01601, Kyiv, Glushkov avenue, 2
  • H. O. Rudik ESC "Institute of Biology and Medicine", Kyiv National Taras Shevchenko University, Ukraine, 01601, Kyiv, Glushkov avenue, 2
  • N. Yu. Taran Навчально-науковий центр «Інститут біології та медицини», Київський національний університет імені Тараса Шевченка, Україна, 03022, м. Київ, просп. Академіка Глушкова, 2


Aim. Preparation of aseptic seedlings Salvia hispanica L., callus initiation in vitro and establishment of primary explants suitable for the callus production. Methods. Seeds are sprouted on our own modification of conventional methods. The non-hormonal Murashige-Skoog agarized nutrient medium was used as basic medium for the experiments. Parts of one-month seedlings (roots, hypocotyl, cotyledon leaves) were used as explants for the use of the colza. We added growth regulators (BAP, 2,4-D) in different concentration combinations into the nutrient medium for callus initiation. Statistical processing was performed in Microsoft Office Excel. Results. Aseptic S. hispanica seedlings have been obtained. The callus growth was initiated on all types of explants, the dependence of the callus intensity on the type of explants and the growth regulators content in the nutrient medium was established. Morphogenic callus and root-regenerants have been obtained. Conclusions. Hypocotyl was the most suitable primary explant for callus growth. Seedlings, leaves and roots showed low morphogenetic capacity. The nutrient medium with an elevated 2,4-D content was the most effective for initiation of callus genesis and proliferation of non-morphogenous callus. A high concentration of 2,4-D in the medium improves S. hispanica callus growth but suppresses its morphogenic ability.
Keywords: Salvia hispanica (Chia), in vitro culture, callus.


Voytenko V.F. et. al. Methodical instructions on seed introduction of introduced plants. Ed. N.V. Tsitsin. N.V. Tsitsin Main botanical garden. Moskva: Nauka, 1980. 62 p.

Kunakh V.A. Biotechnolody of medicinal plants. genetic and physiological basis.: Monograph. Kyiv: Lohos, 2005. 730 p.

Kushnir H.P., Sarnats'ka V.V. Microclonal propagation of plants. Kyiv Naukova dumka, 2005. 270 p.

Nikolaeva M.G., Razumova M.V., Gladkova V.N. Handbook on the germination of dormant seeds. Leningrad: Nauka, 1985. 348 p.

Rudik G.O., Menshova V.O., Berezkina V.I. Seed productivity of Salvia hispanica L. (Lamiaceae) in O.V. Fomin botanical garden. «Medicinal plant growing: from the experience of the past to the latest technologies»: materials of the VI International Scientific and Practical Conference (Poltava, 26-27 Dec. 2017). Poltava. 2017. P. 100-102.

Ali N.M., Yeap S.K. et. al. The Promising Future of Chia, Salvia hispanica L. Review. Journal of Biomedicine and Biotechnology. 2012. Vol. 2012, Article ID 171956, 9 p. doi: 10.1155/2012/171956

Alcântaraa M.A., de Lima Brito Polari I. et. al. Effect of the solvent composition on the profile of phenolic compounds extracted from chia seeds. Food Chemistry. 2019. Vol. 275. P. 489-496.

Bueno M., Di Sapio O., Barolo M. et. al. In vitro response of different Salvia hispanica L. (Lamiaceae) explants. Molecular Medicinal Chemistry. 2010. Vol. 21. P. 125-126.

Gonçalves S., Romano A. Production of Plant Secondary Metabolites by Using Biotechnological Tools. Sec. Metabolites - Sources and Applications. 2018. Chapter 5. P. 81-99. doi: 10.5772/intechopen.76414

Kulczyński B., Kobus-Cisowska J. et. al. The chemical composition and nutritional value of chia seeds—current state of knowledge – review. Nutrients. 2019. Vol. 11(6), 16 p. doi: 10.3390/nu11061242

Marcinek K., Krejpcio Z. Chia seeds (Salvia hispanica): health promoting properties and therapeutic applications – A Review. Rocz Panstw Zakl Hig. 2017. Vol. 68(2). P.123-129.

Marconi P.L. In vitro establishment of Salvia hispanica L. plants and callus. Biotecnología Vegetal. 2013. Vol. 13. P. 203-207.

Murashige T., Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 1962. Vol. 15. P. 473-497. doi: 10.1111/j.1399-3054.1962.tb08052.x

Naik P.M., Al–Khayri J. M. Abiotic and biotic Elicitors–Role in secondary metabolites production through in vitro culture of medicinal plants. Abiotic and Biotic Stress in Plants ‒ Recent Advances and Future Perspectives, 2016, Ch. 10. P. 247-277. doi: 10.5772/61442

Pajarón S., Ron E., Alfayate C. et. al. La mixocarpia de Salvia aegyptiaca L. y su aplicación etnobotánica. Botánica Complutensis. 2008. Vol. 32. P. 213-216.

Ryding O. Myxocarpy in Nepetoideae (Lamiaceae) with notes of myxodiaspory in general. Systematics and Geography of Plants. 2001. Vol. 71(2). P. 503-514.

The Gentianaceae – Vol. 2: Biotechnology and Applications / eds.: Rybczyński J.J., Davey M.R., Mikula A. Springer-Verlag Berlin Heidelberg, 2015. 452 p. doi:10.1007/978-3-642-54102-5_2

Wink M. Biochemistry of Plant Secondary Metabolism (Second Edition). Annual Plant Reviewes. 2010. Vol. 40. 481 р. doi: 10.1002/9781444320503

Zayova E., Nikolova M. et. al. Comparative study of in vitro, ex vitro and in vivo propagated Salvia hispanica (Chia) plants: morphometric analysis and antioxidant activity. AgroLife Scientific Journal. 2016. Vol. 5(2). P. 166-173.