Genetic-physiological basis of legume crops resistance to drought stress

  • V. I. Sichkar Odessa State Agricultural Experimental Station of NAAS of Ukraine, Ukraine, 67667, Odessa region, Bilyaivsky district, settlement Hlibodarskoe, Mayak road, 24
  • S. M. Pasichnyk Odessa State Agricultural Experimental Station of NAAS of Ukraine, Ukraine, 67667, Odessa region, Bilyaivsky district, settlement Hlibodarskoe, Mayak road, 24

Abstract

Goal. Identify the effective criteria for drought tolerances of leguminous crops, based on their basis evaluate the recommendation for cultivating soybean cultivars and discuss the mechanisms of resistance on the organism and molecular levels. Methods. The collection and breeding genotypes of soybean, chickpea and pea were grown in field and laboratory experiments as well as cultivars included in the State register of plant varieties suitable for dissemination in Ukraine. The reaction of soybean plants on the effect of water stress was determined in climatic chambers at the temperature of 30–32 °C. Results. The genetic variability in absorption of water by seeds of various soybean cultivars was detected especially at the initial stages of soaking. The tolerance to drought is associated with the level of free proline accumulation and water-keeping proteins in the leaves, the area of the leaf surface, the loss of moisture by the plant for a certain period, the development of the root system. Soybean cultivars Arcadia odesskaya and Hodson distinguished by increased resistance to drought. Conclusions. Tested in the field and laboratory conditions methods for determining resistance to water stress may be recommended for use in breeding research with agricultural crops.
Keywords: breeding of leguminous crops, drought tolerance, adaptability to high temperature.

References

Maqbool M. A., Aslam M., Ali H. Breeding for improved drought tolerance in Chickpea (Cicer arietinum L.). Plant Breeding. 2017. V. 136(3). P. 300–318. doi: 10.1111/pbr.12477

Sichkar V. I., Grigorjan E. M. Dynamics of leaf surface different soybean varieties with various length of vegetation period. Breeding, seed production and cultivation of fodder crops for the south of Ukraine. Odessa. All-Union Plant Breeding and Genetics Institute, Odessa UA. 1983. P. 40–50.

Diakov A. B., Vasilieva T. A. Physiological basing of ideotype for adapted to South Russia climate soybean cultivars. Modern problems of soybean breeding and cultivation technology. Proc. 2nd International Soybean Conference., Russia, (Krasnodar, September 9–10, 2008). Krasnodar. 2008. P. 62–82.

Sichkar V. I. Special features of the soybean breeding for the improvement in adaptability level. Bulletin of the Center for Science Provision of Agribusiness in the Kharkiv region. 2009. No6. P. 138–150.

Kashiwagi J., Krishnamurthy L., Crouch J. N., Serraj R. Variability of root length density and its contributions to seed yield in chickpea (Cicer arietinum L.) under terminal drought stress. Field Crops Research. 2006. V. 95. P. 171 –181. doi: 10.1016/j.fcr.2005.02.012

Devasirvatham V., Gaur P. M., Mallikarjuna N. et al. Reproductive biology of chickpea response to heat stress in the field is associated with the performance in controlled environments. Field Crops Research. 2013. V. 149. P. 9–19. doi: 10.1016/j.fcr.2012.11.011

Jaleel C. A., Manivannan P., Sankar B. et al. Induction of drought stress tolerance by ketoconazole in Catharanthus roseus is mediated by enhanced antioxidant potentials and secondary metabolite accumulation. Colloids Surf B Biointerfaces. 2007. V. 60(2). P. 201 –206. doi: 10.1016/j.colsurfb.2007.06.010

Mafakheri A., Siosemardeh A., Bahramnejad B. et al. Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. Australian Journal of Crop Science. 2010. V. 4(8). P. 580–585.

Ali M. Y., Krishnamurty L., Saxena N. P., Johansen C. Scope for genetic manipulation of mineral acquisition in chickpea. Plant and Soil. 2002. V. 245(1). P. 123– 134. doi: 10.1023/A:1020616818106

Gan Y., Selles F., Hansen K. G. et al. Effect of formulation and placement of Mesorhizobium inoculants for chickpea in the semiarid Canadian prairies. Canadian Journal of Plant Science. 2005. V. 85(3). P 555–560. doi: 10.4141/P04-026

Groten K., Dutilleul C., Heerden V. et al. Redox regulation of peroxiredoxin and proteinases by ascorbate and thiols during pea root nodule senescence. FEBS Letters. 2006. V. 580(5). P. 1269– 1276. doi: 10.1016/j.febslet.2006.01.043

Garg N., Manchanda G. Effect of arbuscular mycorrhizal inoculation on salt-induced nodule senescence in Cajanus cajan (Pigeonpea). Journal of Plant Growth Regulation. 2008. V.27(2). P. 115–124. doi: 10.1007/s00344-007-9038-z

Charlson D. V., Korth K. L., Purcell L. C. Allantoate amidohydrolase transcript expression is independent of drought tolerance in soybean. Journal of Experimental Botany. 2009. V. 60(3). P. 847– 851. doi: 10.1093/jxb/ern332

Mhadhbi H., Fotopoulos V., Djebali N. et al. Behaviours of Medicago truncatula — Sinorhizobium meliloti symbioses under osmotic stress in relation with the symbiotic partner input: effects on nodule functioning and protection. Journal of Agronomy and Crop Science. 2009. V. 195(3). P. 225–231. doi: 10.1111/j.1439037X.2009.00361.x

Labidi N., Mahmoudi H., Dorsaf M. et al. Assessment of intervarietal differences in drought tolerance in chickpea using both nodule and plant traits as indicators. Plant Breeding and Crop Science. 2009. V. 1(4). P. 80–86.

Leport L., Turner N. C., Davies S. L., Siddique K. H. M. Variation in pod production and abortion among chickpea cultivars under terminal drought. European Journal of Agronomy. 2006. V. 24(3). P. 236– 246. doi: 10.1016/j.eja.2005.08.005

Aslam M., Maqbool M. A., Cengiz R. Droughts stress in maize (Zea mays L.): Effects, resistance mechanisms, global achievements and biological strategies for improvement. SpringerBriefs in Agriculture. 2015. 74 p. doi: 10.1007/978-3-319-25442-5

Thudi M., Gaur P. M., Krishnamurthy L. et al. Genomics-assisted breeding for drought tolerance in chickpea. Functional Plant Biology. 2014. V. 41(11). P. 1178–1190. doi: 10.1071/FP13318

Blum A. Drought resistance, water-use efficiency, and yield potential — are they compatible, dissonant, or mutually exclusive? Australian Journal of Agricultural Research. 2005. V. 56(11). P. 1159– 1168. doi: 10.1071/AR05069

Blum A. Plant breeding for water-limited environments. New York: Springer Science & Business Media. 2010. 255 p.

Krishnamurthy L., Kashiwagi J., Gaur P. M. et al. Sources of tolerance to terminal drought in the chickpea (Cicer arietinum L.) minicore germplasm. Field Crops Research. 2010. V. 119(2–3). P. 322–330. doi: 10.1016/j.fcr.2010.08.002

Krishnamurthy L., Kashiwagi J., Tobita S. et al. Variation in carbon isotope discrimination and its relationship with harvest index in the reference collection of chickpea germplasm. Functional Plant Biology. 2013. V. 40(12). P. 1350–1361. doi: 10.1071/FP13088

Krishnamurthy L., Kashiwagi J., Upadhyaya H. D. et al. Partitioning coefficient — a trait that contributes to drought tolerance in chickpea. Field Crops Research. 2013. V. 149. P. 354–365. doi: 10.1016/j.fcr. 2013.05.02

Procenko D. F., Kyrychenko F. G., Musienko N. N., Slawnyi P. S. Drought resistance of the winter wheat. M., Kolos. 1975. 240 p.

Sloane R. D., Patterson R. P., Carter T. E. Field drought tolerance of a soybean plant introduction. Crop Science. 1990. V. 30(1). P. 118–123. doi: 10.2135/cropsci1990.0011183X003000010027x

Sichkar V. I., Ljashok A. K., Musich V. M. The physiological reaction of soybean cultivars on drought and high temperature. Physiology and biochemistry of cultivated plants. 2001. V. 33(6). P. 497–503.

Gaur P. M., Krishnamurthy L., Kashiwagi J. Improving drought-avoidance root traits in Chickpea (Cicer arietinum L.) — current status of research at ICRISAT. Plant Production Science. 2008. V. 11(1). P. 3–11. DOI: 10.1626/pps.11.3

Gaur P. M., Thudi M., Srinivasan S., Varshney R. K. Advances in chickpea genomics. Legumes in the Omic Era. [Eds.: Sanjeev Gupta, Nagasamy Nadarajan, Debjyoti Sen Gupta]. New York: Springer Science+Business Media, 2014. P. 73–94. doi: 10.1 007/ 978-1-4614-8370-0_4

Bertioli D. J., Moretzsohn M. C., Madsen L. H. et al. An analysis of synteny of Arachis with Lotus and Medicago sheds new light on the structure, stability and evolution of legume genomes. BMC Genomics. 2009. Vol. 10:40 doi: 10.1186/1471-2164-10-45

Varshney R. K., Song C., Saxena R. K. et al. Draft genome sequence of chickpea provides a resource for trait improvement. Nature Biotechnology. 2013. V. 31(3). P. 240–246. doi: 10.1038/nbt.2491

Bett K., Ramsay L., Sharpe A. et al. Lentil genome sequencing: establishing a comprehensive platform for molecular breeding. 6th International Food Legume Res. Conf. and 7tl International Conf. on Legume Genetics. (Saskatoon, Saskatchewan, Canada, July 7–11 2014). 2014. P. 19.

Thudi M., Upadhyaya H. D., Rathore A. et al. Genetic Dissection of drought and heat tolerance in chickpea through genome-wide and candidate gene-based association mapping approaches. PLOS ONE. 2014. V. 9(5). e96758. doi: 10.1371/journal.pone.0096758

Rehman A. U., Malhotra R. S., Bett K. et al. Mapping QTL associated with traits affecting grain yield in chickpea (Cicer arietinum L.) under terminal drought stress. Crop Science. 2011. V. 51(2). P. 450–463. doi: 10.2135/cropsci2010.03.0129

Samineni S., Varshney R. K., Sajja S. et al. High yielding and drought tolerant genotypes developed through marker-assisted back crossing (MBAC) in chickpea. International Plant Breeding Congress (IPBC) and Eucarpia — Oil And Protein Crops Section Conference (Antalya, November 01 –05, 2015). Antalya, Turkey. 2015. P. 122.

Maurel C., Chrispeels M. I. Aquaporines. A molecular entry into plant water relations. Plant Physiology. 2001. V. 125(1). P. 135–138. doi: 10.1104/pp.125.1.135

Tyerman S. D., Niemietz C. M. Bramley H. Plant aquaporins: multifunctional water and solute channels with expanding roles. Plant, Cell & Environment. 2002. V. 25(2). P. 173–194. doi: 10.1046/j.00168025.2001.00791.x

Gupta S., Nawaz K., Parween S. et al. Draft genome sequence of Cicer reticulatum L., the wild progenitor of chickpea provides a resource for agronomic trait improvement. DNA Research. 2017. V. 24(1). P. 1 –10. doi: 10.1093/dnares/dsw042

Thudi M., Li Y., Jackson S. A. et al. Current state-ofart of sequencing technologies for plant genomics research. Briefings in Functional Genomics. 2012. V. 11(1). P. 3–11. doi: 10.1093/bfgp/elr045

Jain N., Misra G., Patel R. K. et al. A draft genome sequence of the pulse crop chickpea (Cicer arietinum L.). The Plant Journal. 2013. V. 74(5). P. 715–729. doi: 10.1111/tpj.12173

Kujur A., Bajaj D., Saxena M. S. et al. Functionally relevant microsatellite markers from chickpea transcription factor genes for efficient genotyping applications and trait association mapping. DNA Research. 2013. V. 20(4). P. 355–374. doi: 10.1093/dnares/dst015