Obtaining of transgenic alfalfa (Medicago sativa L.) and peanut (Arachis hypogaea L.) plants resistant to the herbicide Pursuit by Agrobacterium-mediated transformation

  • S. M. Nifantova Institute of Cell Biology and Genetic Engineering, Natl. Acad. Sci. of Ukraine, Ukraine, 03143, Kyiv, Akad. Zabolotnoho str., 148
  • I. K. Komarnytskyi Institute of Cell Biology and Genetic Engineering, Natl. Acad. Sci. of Ukraine, Ukraine, 03143, Kyiv, Akad. Zabolotnoho str., 148
  • M. V. Kuchuk Institute of Cell Biology and Genetic Engineering, Natl. Acad. Sci. of Ukraine, Ukraine, 03143, Kyiv, Akad. Zabolotnoho str., 148

Abstract

Aim. The production of alfalfa and peanut cultivars with new properties is necessary. The purpose of this work was to develop Agrobacterium-mediated transformation protocol and to construct transgenic alfalfa and peanut plants resistant to herbicide Pursuit Methods. Genetic transformation was carried out using cocultivation of peanut and alfalfa explants with Agrobacterium tumefaciens strain GV3101 carrying genetic construct pCB004 containing mutant ahas/als gene and nptII gene. Selection was held on the solidified callus inducing medium with 50 mkg/l Pursuit. The selected callus clones were put on the regeneration medium with the same selective agents. Obtained regeneration lines were analysed using PCR-analysis. Results. 17 peanut and 14 alfalfa regeneration lines had positive signals after PCR analysis with DNA fragments of required molecular size for ahas/als and nptII genes. Conclusions. Transgenic alfalfa and peanut plants resistant to the herbicide Pursuit were obtained.
Keywords: alfalfa, peanut, ahas/als gene, transformation.

References

Atkins C.A., Smith P.M.C. Genetic transformation and regeneration of legumes. In A. Legocki, H. Bothe, A. Puhler, eds, Biological Fixation of Nitrogen for Ecology and Sustainable Agriculture. Berlin: Springer-Verlag, 1997. P. 283-304. doi: 10.1007/978-3-642-59112-9_59

Babaoglu M., Davey M.R., Power J.B. Genetic engineering of grain legumes: key transformation events. AgBiotechNet. 2000. V. 2. ABN 050. P. 1-8.

Christou P. Biotechnology applied to grain legumes. Field Crop Res. 2000. V. 53. P. 83-97. doi: 10.1016/S0378-4290(97)00024-5

Somers D.A., SamacD.A., Olhof P.M. Recent Advances in Legume Transformation. Plant Physiol. 2003. V. 131. P. 892-899. doi: 10.1104/pp.102.017681

Yadav N., McDevitt, Benard R.E., Falco S.C. Single amino acid substitusion in the enzyme acetolactate syntase confer resistance to the herbicide sulfometuron methyl. Proc. Natl. Acad. Sci. U.S.A. 1986. V. 83. P. 4418-4422. doi: 10.1073/pnas.83.12.4418

Haughn G.W., Somerville C. Sulfonylurea-resistant Arabidopsis thaliana. Mol Gen Genet. 1986. V. 204. P. 430-434. doi: 10.1007/BF00331020

Gabard J.M., Charest P.J., Charest, Iyer V.N., Miki B.L. Cross-Resistance to Short Residual Sulfonylurea Herbicides in Transgenic Tobaco Plants. Plant Physiol. 1989. V. 91. P. 574-580. doi: 10.1104/pp.91.2.574

Haugh G.W., Smitt J., Mazur B. Transformation with a mutant Arabidopsis acetolactate synthase gene renders tobacco resistant to sulfonylurea herbicides. Mol. Gen. Genet. 1988. V. 211. P. 266-271. doi: 10.1007/BF00330603

Lee K.Y., Townsend Y., Tepperman J. The molecular basis of sulfonylurea herbicide resistance in tobacco. EMBO J. 1988. V. 7. P. 1241-1248. doi: 10.1002/j.1460-2075.1988.tb02937.x

Smith J.K., Mauvais C.J., Knowlton S., Mazur B.J. Molecular biology of resistance to sulfonylurea herbicides. Proc. ACS Symp. Biotechnol. Crop Protect. Washington D.C., 1988. P. 25-36. doi: 10.1021/bk-1988-0379.ch002

Pogrebniak N.Ia., Kravets O.A., Shisha E.N., Gleba Iu.Iu. Poluchenie kletochnykh liniy i rasteniy kartofelia, ustoychivykh k deystviiu gerbitsida. Tsitol Genet. 1992. V. 26. P. 50-55. [in Russian]

Nifantova S.N., Simonenko Yu.V., Komarnitsky I.K., Kuchuk N.V. Production of transgenic pea (pisum sativum l.) plants resistant to pursuit herbicide, Tsitol Genet. 2005. V. 39(2). P. 16-21. [in Russian]

Nifantova S.N., Komarnickiy I.K., Kuchuk N.V. Obtaining of transgenic French bean plant (Phaseolus vulgaris L.) resistant to the herbicide Pursuit by Agrobacterium-mediated transformation. Cytology and Genetics. 2011. V.45(2). P. 97-100. doi: 10.3103/S0095452711020113

De Block M., Botterman J., Vandewiele M., Dockx J., Thoen C., Gossele V., Movva N.R., Thompson C., Van Montagu M., Leemans J. Engineering herbicide resistance in plants by expression of a detoxifying enzyme. EMBO J. 1987. V. 6. P. 2513-2518. doi: 10.1002/j.1460-2075.1987.tb02537.x

Doyle J.J., Doyle J.L. Isolation of plant DNA from fresh tissue. Focus. 1990. V. 12. P. 13-15. doi: 10.2307/2419362

D'Halluin K., Botterman J., De Greef W. Engineering of herbicide-resistance alfalfa and evalution under field conditions. Crop Sci. 1990. V. 30. P. 866-871. doi: 10.2135/cropsci1990.0011183X003000040020x

Heck G.R., Armstrong C.L., Astwood J.D., Behr C.F., Bookout J.T., Brown S.M., Cavato T.A., DeBoer D.L., Deng M.Y., George C., Hillyard J.R., Hironaka C.M., Howe A.R., Jakse E.H., Ledesma B.E., Lee T.C., Lirette R.P., Mangano M.L., Mutz J.N., Qi Y., Rodriguez R.E., Sidhu S.R., Silvanovich A., Stoecker M.A., Yingling R.A., You J. Development and characterization of a CP4 EPSPS-based, glyphosate-tolerant corn event. Crop Sci. 2005. N 44. P. 329-339. doi: 10.2135/cropsci2005.0329