Analysis of resistence to osmotic stress transgenic wheat plants, carring the gene ornithine aminotransferase

  • O. M. Honcharuk Institute of Plant Physiology and Genetics of Natl. Acad. Sci. of Ukraine, Ukraine, 03022, Kyiv, Vasylkivska str., 31/1
  • O. V. Dubrovna Institute of Plant Physiology and Genetics of Natl. Acad. Sci. of Ukraine, Ukraine, 03022, Kyiv, Vasylkivska str., 31/1

Abstract

Aim. Analysis of resistance to osmotic stress of transgenic wheat plant with a target gene ornithine aminotransferase. Methods. Physiological and biochemical methods were used to characterize the transgenic plants. Results. It is shown that increased expression of the gene oat accelerates rooting and encourages root growth is not only normal, but under stress. It is found that changes in gene expression oat not significantly affect the accumulation of proline neither normal nor under stress. Conclusions. It is shown that the introduction of genetic construct that increases expression of gene oat in wheat genome leads to increased osmotolerance of plants. Enhancement of gene expression oat not significantly affect the accumulation of proline neither normal nor under stress.

Keywords: Triticum aestivum, Agrobacterium-mediated transformation in vitro, ornithine aminotransferase, osmotolerance.

References

El-Mangoury K., Abdrabou R., Yasien M., Fahmy A. Optimization of a transformation system for three Egyptian wheat cultivars using immature embryo-derived callus via microprojectile bombardment. Arab. J. Biotech. 2006. V. 9(1). P. 175–188.

Xia G., Li Z., He C., Chen H., Richard B. Transgenic plant regeneration from wheat (Triticum aestivum L.) mediated by Agrobacterium tumefaciens. Acta Physiol. Sin. 1999. V. 25. P. 22–28.

Szabados L., Savoure A. Proline: a multifunctional amino acid. Trends in Plant Science. 2009. V. 15(2). P. 89-97. doi: 10.1016/j.tplants.2009.11.009

Kishor P., Sangam S., Amrutha R. Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: Its implication in plant growth and abiotic stress tolerance. Curr. Sci. 2005. V. 88(3). P. 424-438.

Roosens N., Bitar F., Loenders K. Overexpression of ornithine-aminotransferase increases proline biosynthesis and confers osmotolerance in transgenic plants. Mol. Breed. 2002. V. 9(2). P. 73-80.

Martinelli T., Whittaker A., Bochicchio A., Vazzana C., Suzuki A., Masclaux-Daubresse C. Amino acid pattern and glutamate metabolism during dehydration stress in the 'resurrection' plant Sporobolus stapfianus: a comparison between desiccation-sensitive and desiccation-tolerant leaves. J. Exp. Bot. 2007. V. 58(11). P. 3037-3046. doi: 10.1093/jxb/erm161

Stránská J., Kopecný D., Tylichová M., Snégaroff J., Sebela M. Ornithine delta-aminotransferase: An enzyme implicated in salt tolerance in higher plants. Plant Signal Behav. 2008. V. 3(11). P. 929-935. doi: 10.4161/psb.6771

Funck D., Stadelhofer B., Koch W. Ornithine-delta-aminotransferase is essential for arginine catabolism but not for proline biosynthesis. BMC Plant Biol. 2008. V. 8. P. 40. doi: 10.1186/1471-2229-8-40

Canas R.A., Villalobos D.P., Diaz-Moreno S.M., Canovas F.M., Canton F.R. Molecular and functional analyses support a role of ornithine-ƍ-aminotransferase in the provision of glutamate for glutamine biosynthesis during pine germination. Plant Physiol. 2008. V. 148. P. 77-88. doi: 10.1104/pp.108.122853

Mattioli R., Costantino P., Trovato M. Proline accumulation in plants: not only stress. Plant Signal Behav. 2009. V. 4(1). P. 1016-1018. doi: 10.4161/psb.4.11.9797

Roosens N.H., Bitar F.A., Loenders K., Angenon G., Jacobs M. Overexpression of ornthine-ƍ-aminotransferase increases proline biosynthesis and confers osmotolerance in transgenic plants. Mol. Breed. 2002. V. 9. P. 73-80.

Roosens N., Thu T.T., Iskandar H.M., Jacobs M. Isolation of ornithine-ƍ- aminotransferase cDNA and effect of salt stress on its expression in Arabiodipsis thaliana. Plant Physiol. 1998. V. 117. P. 263-271. doi: 10.1104/pp.117.1.263

Boon L., Geerts W., Jonker A., Lamers W.H., Van Noorden C.J.F. High protein diet induces pericentral glutamate dehydrogenase and ornithine aminotransferase to provide sufficient glutamate for pericentral detoxification of ammonia in rat liver lobules. Histochem. Cell. Biol. 1999. V. 111. P. 445-452. doi: 10.1007/s004180050380

Slocum R.D. Genes, enzymes and regulation of arginine biosynthesis in plants. Plant Physiol. and Biochem. 2005. V. 43. P. 729-745. doi: 10.1016/j.plaphy.2005.06.007

Page A.F., Minocha R., Minocha S.C. Living with high putrescine: expression of ornithine and arginine biosynthetic pathway genes in high and low putrescine producing poplar cells. Amino Acids. 2012. V. 42. P. 295-308. doi: 10.1007/s00726-010-0807-9

Wu L., Fan Z., Guo L. Over-expression of an Arabidopsis OAT gene enhances salt and drought tolerance in transgenic rice. Chinese Sci. Bull. 2003. V. 48(23). P. 2594-2600. doi: 10.1360/03wc0218

Vendruscolo E., Schuster I., Pileggi M. Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat. Plant Physiol. 2007. V. 164(10). P. 1367-1376. doi: 10.1016/j.jplph.2007.05.001

Delauney A.J., Verma D.P.S. Proline biosynthesis and osmoregulation in plants. Plant J. 1993. V. 4(2). P. 215-223. doi: 10.1046/j.1365-313X.1993.04020215.x

Bavol A.V., Dubrovna O.V., Honcharuk O.M., Voronova S.S. Agrobacterium-oposeredkovana transformatsiia m'iakoi pshenytsi z vykorystanniam kaliusnykh kul'tur. Faktory eksperymentalnoi evoliutsii orhanizmiv. 2014. V. 15. P. 16-19. [in Ukrainian]

Murashige T., Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 1962. V. 15. P. 473-497. doi: 10.1111/j.1399-3054.1962.tb08052.x

Andriushchenko V.K., Saianova V.V., Zhuchenko A.A. [et al.] Modifikatsiia metoda opredeleniia prolina dlia vyiavleniia zasukhoustoychivykh form roda Lycopersicon Tourn. Izv. Akad. nauk Mold. SSR. 1981. V. 4. P. 55-60. [in Russian]

Sharma S., Verslues P.E. Mechanisms independent of abscisic acid (ABA) or proline feedback have a predominant role in transcriptional regulation of proline metabolism during low water potential and stress recover. Plant, Cell and Environment. 2010. V. 33. P. 1838-1851. doi: 10.1111/j.1365-3040.2010.02188.x

Xue X., Liu A., Hua X. Proline accumulation and transcriptional regulation of proline biosynthesis and degradation in Brassica napus. BMB Reports. 2009. V. 42. P. 28-34. doi: 10.5483/BMBRep.2009.42.1.028

Szabados L., Savouré A. Proline: a multifunctional amino acid. Trends in plant science. 2010. V. 15(2). P. 89-97. doi: 10.1016/j.tplants.2009.11.009