Determination of osmotolerance of bread wheat plants (Triticum aestivum L.), carrying dsRNA-suppressor of proline dehydrogenase gene

  • S. S. Voronova Institute of Plant Physiology and Genetics of Natl. Acad. Sci. of Ukraine, Ukraine, 03022, Kyiv, Vasylkivska str., 31/17
  • O. V. Dubrovna Institute of Plant Physiology and Genetics of Natl. Acad. Sci. of Ukraine, Ukraine, 03022, Kyiv, Vasylkivska str., 31/17

Abstract

Aim. Analysis of tolerance to osmotic stress of transgenic wheat plants, carrying a dsRNA-suppressor of prolinedegidrigenase gene. Methods. Physiological and biochemical methods were used to characterize the transgenic plants. Results. It is shown that partial suppression of gene prolinedegidrigenase was accompanied not only increase the level of free proline, but higher levels of resistance of transgenic wheat plants to water deficit. It is found that transgenic plants do not differ from control by morphological parameters and timing of development. Conclusions. The interrelation between catabolism of proline and resistance to osmotic stress was identified, which may be due to the influence of proline or the expression of other genes of plant stress response, or positive impact of increased resistance to proline content in the early stages of stress.

Keywords: Triticum aestivum, Agrobacterium-mediated transformation in vitro, dsRNA-suppressor proline dehydro-genase gene, osmotolerance.

References

Hare P.D., Cress W.A. Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regulation. 1997. V. 21. P. 79-102. doi: 10.1023/A:1005703923347

Hare P.D., Cress W.A., Van Staden J. Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environm. 1998. V. 21. P. 535-553. doi: 10.1046/j.1365-3040.1998.00309.x

Kuznetsov V.V., Sheviakova N.I. Prolin pri stresse: biologicheskaia rol', metabolizm, reguliatsiia. Fiziologiia rasteniy. 1999. V. 46. P. 321-336. [in Russian] doi: 10.1007/BF02464781

Smirnoff N., Cumbes Q.J. Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry. 1989. V. 28. P. 1057-1060. doi: 10.1016/0031-9422(89)80182-7

Russo A.T., Rosgen J., Bolen D.W. Osmolyte effects on kinetics of FKBP12 C22A folding coupled with prolyl isomerization. J. Mol. Biol. 2003. V. 330. P. 851-866. doi: 10.1016/S0022-2836(03)00626-0

Kavi Kishor P.B., Sangaml S., Amrutha R.N. Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: Its implications in plant growth and abiotic stress tolerance. Current Science. 2005. V. 88(3). P. 424-436.

Fabro G., Kovács I., Pavet V. Proline accumulation and AtP5CS2 gene activation are induced by plant-pathogen incompatible interactions in Arabidopsis. Molecular Plant-Microbe Interactions. 2004. V. 17(4). P. 343-350. doi: 10.1094/MPMI.2004.17.4.343

Verbruggen N., Hermans C. Proline accumulation in plants: A review. Amino Acids. 2008. V. 35. P. 753-759. doi: 10.1007/s00726-008-0061-6

Sreenivasulu N., Sopory S.K., Kavi Kishor P.B. Deciphering the regulatory mechanisms of abiotic stress tolerance in plants by genomic approaches. Gene. 2007. V. 388. P. 1-13. doi: 10.1016/j.gene.2006.10.009

Delauney A.J., Verma D.P.S. Proline biosynthesis and osmoregulation in plants. Plant Journal. 1993. V. 4. P. 215-223. doi: 10.1046/j.1365-313X.1993.04020215.x

Kavi Kishor P.B., Hong Z., Miao G.-H. Overexpression of a delta-1-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol. 1995. V. 108. P. 1387-1394. doi: 10.1104/pp.108.4.1387

Xin Z., Browse J. Eskimo1 Mutants of arabidopsis are constitutively freezing-tolerant. Proc. Natl. Acad. Sci. U.S.A. 1998. V. 95. P. 7799-7804. doi: 10.1073/pnas.95.13.7799

Nanjo T., Kobayashi M., Yoshiba Y. Antisense Suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. FEBS Lett. 1999. V. 461. P. 205-210. doi: 10.1016/S0014-5793(99)01451-9

Konsnatinova T., Parvanova D., Atanassov A. Freezing tolerant tobacco, transformed to accumulate osmoprotectants. Plant Sci. 2002. V. 163. P. 157-164. doi: 10.1016/S0168-9452(02)00090-0

Verdoy D., Coba de la Peña T., Redondo F.J. Transgenic Medicago truncatula Plants that accumulate proline display nitrogen-fixing activity with enhanced tolerance to osmotic stress. Plant Cell Environ. 2006. V. 29. P. 1913-1923. doi: 10.1111/j.1365-3040.2006.01567.x

Mokhammed A.M., Raldugina G.N., Kholodova V.P. Akkumuliatsiia osmolitov rasteniiami razlichnykh genotipov rapsa pri khloridnom zasolenii. Fiziologiia rasteniy. 2006. V. 53. P. 732-738. [in Russian]

Mokhammed A.M., Titov S.E., Kochetov A.B. Fiziologo-molekuliarnye kharakteristiki transgennykh rasteniy rapsa, nesushchikh antismyslovoy supressor gena prolindegidrogenazy. Mater. IX Mezhd. konf. molodykh botanikov v Sankt-Peterburge. Sankt-Peterburg, 2006. P. 201-202. [in Russian]

Maggio A., Bressan R.A., Hasegawa P.M. Moderately increased proline level does not alter osmotic stress tolerance. Physiol. Plant. 1997. V. 101. P. 240-246. doi: 10.1034/j.1399-3054.1997.1010131.x

Mani S., van de Cotte B., van Montagu M. Altered level of proline dehydrogenase cause hypersensitivity to proline and its analogs in arabidopsis. Plant Physiol. 2002. V. 128. P. 73-83. doi: 10.1104/pp.010572

Ribarits A., Abdullaev A., Tashpulatov A. Two tobacco proline dehydrogenases are differentially regulated and play a role in early plant development. Planta. 2007. V. 225. P. 1313-1324. doi: 10.1007/s00425-006-0429-3

Ueda A., Shi W., Shimada T. Altered expression of barley proline transporter causes different growth responses in arabidopsis. Planta. 2008. V. 227. P. 277-286. doi: 10.1007/s00425-007-0615-y

Poustini, K., Siosemardeh, A., Ranjbar M. Proline accumulation as a response to salt stress in 30 wheat (Triticum aestivum L.) cultivars differing in salt tolerance. Genetic Resources and Crop Evolution. 2007. V. 54(5). P. 925-934. doi: 10.1007/s10722-006-9165-6

Kavi Kishor P.B., Hong Z., Miao G.-H. Overexpression of a delta-1-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol. 1995. V. 108. P. 1387-1394. doi: 10.1104/pp.108.4.1387

Bavol A.V., Voronova S.S., Dubrovna O.V. Optymizatsiia Agrobacterium-oposeredkovanoi transformatsii kaliusnykh kul'tur pshenytsi. Fiziologiia rasteniy i genetika. 2015. V. 47(1). P. 58-65. [in Ukrainian]

Bates L.S., Waldren R.P., Teare L.D. Rapid determination of free proline for water-stress studies. Plants and Soil. 1973. V. 39(1). P. 205-207. doi: 10.1007/BF00018060

Murashige T., Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 1962. V. 15. P. 473-497. doi: 10.1111/j.1399-3054.1962.tb08052.x