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METHODS OF GENETIC MAPPING USING SNP-MARKERS 
Aims. The appearance of SNP-markers leads to the increasing of density of existing genetic maps and simul-
taneously has generated two major problems. The first problem is technical; associated with the processing 
of much more information. The second problem, algorithmic, raises the question: how to derive the expected 
results? Methods. Two algorithms of genetic mapping are proposed. One of them aims to maps building 
without any bound-together markers. It is based on the removing of all the markers from some area of chosen 
markers. The second method is applied when there are some groups of bound-together markers. It is based 
on the use of one representative from each set of bound-together markers. Results. Both methods allow solv-
ing of the problem; however the second method can only work at a reasonable population size, which does 
not lead to the total destruction of the sets of bound-together markers. Maps can be built by this method with 
very high precision. Moreover, this method uses earlier developed algorithms. Conclusions. Specified level 
of errors in the identification of alleles of SNP-markers limits the density of markers on the genetic map by 
some value that is independent of population size.  
Key words: SNP-markers, genetic mapping, bound-together markers. 
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FATTY ACID COMPOSITION OF CYP11A1 CANOLA LEAVES UNDER HEAT SHOCK 
Aims. Investigation of cyp11A1 gene influence on leaf fatty acid composition of canola. Methods. Gas 
chromatography of fatty acid metyl esters. Results. Qualitative fatty acid composition of transgenic leaves 
remained unchanged in comparison with the wild plants. There were no differences between cyp11A1 and 
initial canola in 16:0, 16:3, 18:2 and 18:3 acid content under appropriate temperature (+22° ). But 
palmitoleic acid content was lower by 31% in the control than in transgenic plants. Total lipid content was 
27% lower in transgenic plants than in the control ones. Heat shock (+42° ) stress did not lead to the change 
in total lipids in cyp11A1 leaves and lowered it in initial plants by 31%. As a result of stress the content of 
palmitic (+19%), 16:3 (-33%) and linoleic (+24%) acids was changed in transgenic leaves. Initial plants re-
acted to the high temperature by increasing in palmitoleic (31%) and linoleic (24%) acids. Conclusions. The 
introduction of cyp11A1 gene in canola nuclear genome affected total lipid content by increasing up 25% 
and unsaturation index by decreasing 0,03% under heat.  
Key words: transgenic canola, cyp11A1, gas chromatography, fatty acids  
 
 


